
Model-based engineering of multi-platform, synchronous & collaborative UIs
Extending UsiXML for polymorphic user interface specification

George Vellis1, Dimitrios Kotsalis1, Demosthenes Akoumianakis1, Jean Vanderdonckt2
1Department of Applied Informatics & Multimedia, Technological Education Institution of Crete, Greece

2Université catholique de Louvain, Louvain School of Management, Belgium
{g.vellis, kotsalis, da}@epp.teicrete.gr, Jean.vanderdonckt@uclouvan.be

Abstract— The paper describes an engineering method for
building user interfaces for ubiquitous environments. The
method comprises of several extensions in the UsiXML family
of modes as well as design and runtime support so as to enable
multi-platform, synchronous and collaborative interactions.
We demonstrate key concepts of the method and their
application by elaborating a scenario of collaborative co-play
of the ‘tic-tac-toe’ game. The specific use case features
synchronous co-engagement in game play by remote users
(players or observers) using desktop PCs or Android devices.

Keywords- Polymorphic UI instantiation; collaborative user
interfaces; UsiXML; Model-based UI engineering

I. INTRODUCTION
In recent years, several interactive applications have

emerged enabling users to engage in various sorts of
collaborative and social endeavors using a variety of novel
computational appliances such as smart phones and tablets.
In such settings one important aspect to consider relates to
the design and computational manifestation of user
interfaces (UIs) capable to support increasingly complex
and collaborative work. Early desktop-based UI engineering
addressed this challenge through concepts such as
groupware toolkits and multi-user UIs [1]. In all cases, the
core approaches relies on toolkit programming methods,
which however make assumptions about object classes,
dialogue, and runtime environments that prohibit flexible UI
instantiations for different purposes or across platforms
and/or contexts of use. An alternative to toolkit-based
programming is model-based development of UIs (MBUI).
This is an approach featuring the use of models to specify
different aspects of a UI. Arguably, MBUI engineering
provides a better frame of reference for interactive
applications intended for ubiquitous use. Advantages result
from the commitment to abstract notations and mark-up
languages to facilitate specification of abstract components
and their subsequent mapping to platform-specific
vocabularies. Such mappings entail transformation schemes
that result in delegating the display to a platform-specific
renderer [2].

The proliferation of a wide range of platforms and
devices challenges MBUI engineering at several fronts.
Firstly, due to variations in the target interaction
vocabularies, mapping schemes are frequently ad hoc,
limited to simple components and certain types of UIs (i.e.,
form-based). Secondly, the increasingly collaborative
settings complicate MBUI engineering as they bring to the

surface novel requirements such synchronization, awareness
and true plasticity. Attempts to address these challenges
(i.e., [3], [15], [16], [20]) are still immature or at best
limited to a narrow range of collaborative engagements. For
instance, there have been efforts concentrating primarily on
devising notations and tools to model cooperative dialogue
and workflows [20], but they seem to dismiss aspects of
synchronous and cross-platform activities. It is therefore
compelling to devise development methods, properly
supported by dedicated tools, so as to accommodate intrinsic
requirements of increasingly ubiquitous contexts of use.

This paper proposes a method and a set of tools that
extent MBUI engineering by articulating the concept of
polymorphic UI instantiation schemes. Polymorphic
instantiation relies on implementation agnostic (i.e.,
abstract) specifications of UIs which at run-time – and once
user and usage context parameters are discovered – may be
translated to context-specific interaction vocabularies using
dedicated tools. An imperative commitment of this claim is
that UIs can be assembled at runtime, rather than
programmed, so as to comprise of those interactive
incarnations of ‘abstract’ widgets that best fit the current
context of use. The present work elaborates the concept and
describes how it is integrated into a popular MBUI
engineering method, namely UsiXML, so as to facilitate
complex requirements such as users’ co-engagement in
synchronous collaborative sessions and management of
diverse collections of objects (both native and non-native),
as well as novel affordances such as awareness and social
translucence.

II. RELATED WORK
The concept of polymorphic UI instantiation was

initially proposed and implemented in the Platform
Integration Module [5] and subsequently in the HOMER
UIMS [4]. In both cases, it was conceived of as a language
construct inscribed in toolkit-based implementations, while
it was applied to accommodate specific accessibility
challenges (i.e., access to visual and non-visual UIs). More
recent research streams revisit aspects of polymorphic
instantiation but from a totally different perspective.

A. Early efforts in toolkit-based approaches
At core, polymorphic instantiation entails a capability

for adaptations and UI assembly rather than programming.
Toolkit-based approaches do not support UI assembly. On
the other hand, there have been proposals aiming to
facilitate adaptive interactions. An early effort is Meta-

2012 16th Panhellenic Conference on Informatics

978-0-7695-4825-8/12 $26.00 © 2012 IEEE

DOI 10.1109/PCi.2012.27

339

widgets [7] focusing on architectural styles for
encapsulating alternative object classes into widget
abstractions. Meta-widgets were conceived of as
components on top of implementation-specific toolkits and
were applied for building adaptive multi-modal UIs.
However, their implementation assumes non-extensible
instantiation schemes, while provisions for multi-user
aspects and novel affordances (i.e., information sharing,
awareness, etc.) are completely dismissed. Subsequent
efforts, such as [8] its ancestor [9] and [10], share similar
grounds though adopting a slightly different perspective.
The key difference from Meta-widgets is that these toolkits
separate alternative input and output mechanisms from the
actual (i.e., common) behavior supported by a widget.
Nevertheless, as in the case of Meta-widgets, they fall short
in support for synchronous collaborative aspects.

Another key intention of polymorphic instantiation is to
support collaboration. Again, early efforts address this goal
sub-optimally. Groupware toolkits [21] followed the path of
providing high level-abstractions of low-level
programmatic-intensive tasks to facilitate session
management, communication, sharing, awareness and
synchronization. MAUI [1] is an indicative example of this
category exploiting toolkit-level sharing to provide an
extended set of groupware widgets (i.e., multi-user
scrollbar, menus, etc.) with native support for group
awareness inscribed in the widgets’ dialogue. Again, all
efforts in this vein fall short in supporting heterogeneous
contexts of use since they make assumptions about the
underlying platform or toolkit. As a result they are biased
either to a single-only or a set of homogenous platforms.

B. Promises of MBUI engineering
With the advent of MBUI engineering methods, the

constraints of toolkit-based approaches could be relaxed.
Several new frameworks have been proposed claiming
advantages over the previous development paradigm. In
[12], a method is proposed allowing the specification of a
UI at multiple levels of abstraction by means of specific
model types. Adaptations are supported through appropriate
transformations on source models so as to obtain the desired
target model. Transformations can be applied at the same
level (constituting translation process), in an abstract to
concrete order (reification process) or the reverse i.e., from
concrete to a more abstract definition (abstraction). A UIs
capacity to properly adapt in its current context of use is
determined by its ability to devise each time the appropriate
transformation rules.

The COMMETS Framework [6] represents a further
step in this direction. The mapping problem is addressed
using semantic networks [18], thus enabling intuitive
runtime adaptations while ensuring continuity of use (i.e.,
plasticity) at any level of abstraction (tasks, AUI, CUI).
Nevertheless, the approach dismisses user roles, session
management, replication and awareness. Moreover, it offers
no tool support, thus by passing aspects related to low-level
issues such as managing diverse collections of objects,
distributed class loading, dependency libraries, specific
toolkit-level instantiation instructions, pre-instantiation
configuration of widgets, etc. On the other hand, it does

introduce a new development workflow which is demanding
in terms of comprehension and successful management.

Some MBUI engineering methods have attempted to
explore collaborative interaction. Indicative examples
include FlowiXML [20], AMENITIES [15], CIAM [16] and
TOUCHE [3]. These efforts concentrate primarily on
devising notations and tools to model cooperative behavior
and workflows. In effect, their primary contribution is that
they make explicit different elements of collaboration (i.e.,
roles, responsibilities and tasks) using dedicated notations.
However, only some of these efforts make inroads towards
generating the UI of collaborative applications. An example
in this direction is TOUCHE [3] providing multiuser
functionality using ad-hoc mappings to a custom underlying
groupware toolkit. As a result multi-platform support is
limited by the availability and support of the underlying
toolkit in every target context.

In spite of these shortcomings, MBUI engineering
remains a promising strand as it offers methods that are
extensible and can be augmented to cope with the issues
pending. An example is UsiXML [12] which constitutes the
reference implementation of the Cameleon Reference
framework devised to provide support for plasticity [14].
UsiXML proposes the definition of UIs at four levels of
abstraction each focusing on different aspects of the
development process. Specifically, at the tasks and concepts
layer (i.e., the most abstract level supported) a UI is
specified in terms of incremental decomposition of tasks
into sub-tasks anchored by operators defining sequence of
execution. At the AUI level [11] (i.e., the next most
concrete layer) a UI is enabled to be specified independently
of any interaction modality as an interactive hierarchy
comprised of abstract interaction objects and containers.
Finally, at the CUI level of abstraction a UI is defined in
terms of concrete interaction objects properly assembled
independent of any implementation-specific technology
(i.e., Platform Independent Model). Transitions between
different levels of abstractions are supported by adopting a
semiautomatic transformational approach (i.e., graph
transformations). One serious limitation of UsiXML is the
support it offers for utilizing different target presentation
vocabularies. Specifically, at present the language is limited
to interaction elements supported by most popular toolkits.
This is obviously a shortcoming as it constrains the
language’s expressiveness and restricts the type of UIs
possible to form-based.

III. APPROACH
The present work seeks to alleviate several of the

limitations elaborated earlier, thus establishing new grounds
for MBUI engineering. At base, our effort is anchored by (a)
extending UsiXML ([12], [13]) so as to provide full support
for polymorphic UI instantiation and (b) providing sufficient
design and run-time support. The rest of the paper presents
recent extensions following the proposal detailed in [17].

A. Language Extensions
UsiXML extensions cover new workflows and

language-level constructs as well as enhancements in the
UsiXML family of models.

340

Polymorphic Widget Specification Work flow. In order to
provide support for the diverse collections of objects, either
native or custom, a Widget Specification work flow has
been introduced to allow XML schema compliant widget
specs. The workflow relies on a dedicated specification
language (WSL) that allows our tools to integrate and utilize
third party widget libraries (Figure 1). In general, for any
‘abstract’ widget to be deployed in our platform it must first
be associated with a corresponding instance of the WSL.
Each WSL instance comprises of a unique id and name,
platform availability, a list of all abstract properties (i.e.,
common across all alternative instantiations), as well as the
alternative polymorphic instantiations to be exploited at
runtime. Additionally, each instantiation has to expose its
API (i.e., constructors, accessor and mutator methods, etc.)
and define a list of all polymorphic properties it supports.

Figure 1: Overview of the widget specification workflow

An example of a WSL abstract widget is depicted in Figure
2, summarizing an abstract button and its designated
instances in terms of properties. As shown the specification
comprises of the widget’s unique id and name, followed by
an enumeration of all alternative interactive instantiations
supported. In this manner, it is possible to define
polymorphic instances of an abstract button as in Figure 3.

Figure 2: ‘abstractButton’ WSL

Figure 3: Polymorphic instantiations

It is worth noticing that the left hand side (rectangular)
represents a conventional single-user instance, while the
right hand side is non-native, intended for distributed
synchronous collaborative rendering with social scent.
Figure 2 details that social scent is a property of the abstract
widget, allowed only in the second (round) instance.

Behavior Model. The two version of the abstract button
indicate that widget instances need not differ only at
physical level but also in terms of dialogue. This
necessitates provisions for accommodating different
interactive behaviors. Thus, a behavior model is used to
capture application-specific states and the state transition
logic registered to designated polymorphic instances. This is
done using Finite State Machines (FSM) for interfacing and
monitoring without the need of using low-level event-
listener classes [19]. Moreover, FSMs make it possible for
designers to define custom states and thereby associate
alternative behaviors to different object instances as needed.
Another property of FSMs is that they allow for a high level
synchronization of widgets supporting alternative input
mechanisms and transitions. For example, it is possible to
synchronize two buttons by manipulating designated states.
Thus, a conventional desktop button sensitive to
‘mouseOver’ input behavior can be synchronized with a
touch sensitive android with a corresponding ‘onTap’ input
mechanism. Such synchronization can be easily
implemented using FSMs on the grounds of the common
states supported (i.e., pressed, released) completely ignoring
the local widget transitions. This allows not only for
relaxed-coupling between distributed users, but also for
more advanced behavior modeling. Finally, FSMs can be
defined in an implementation-independent way. In light of
the above, our behavior model may comprise several FSMs
per polymorphic instance, while transitions supported by
each are codified in the instance’s section in the WSL spec.

Abstraction Model. In addition to coping with alternative
behaviors, it is also important to devise models to unify
alternative interactive instances across different settings
(i.e., distributed or collocated) on the grounds of shared
models (in the sense of MVC). Thus, an abstraction model
comprises of classes defining those common properties
(relieved from physical characteristics). Consequently, an
abstraction model facilitates model-level sharing (in
contrast to toolkit-level sharing) in distributed settings. The
reason for not directly synchronizing widget models (again
in the MVC sense) is because it is quite simpler to
centralize concerns via abstraction classes, than it would be
by trying to define intertwined relationships across several
widgets. Moreover, it would be rather impossible to inject
collaboration aware code to collaboration unaware widgets.

Consistency Model. Having detailed the role of behavior
and abstraction models, we now turn to consistency issues.
A consistency model implements the role of a broker
between widgets to be synchronized through abstraction

341

classes. Such a role comprises declaration of the links (or
bindings) to be established across ‘abstract’ properties of
abstraction classes and instance-specific properties.
Through such bindings, it is possible to broadcast potential
changes in the value of an abstract property to all widgets
linked to that property. This process is transparent to
developers as it is automatically handled by the runtime
environment in a manner that guarantees that states of peer
widgets comply with a ‘consistent state’ designated in the
corresponding block tag of the abstraction model.

B. Design tools and suite
Having described briefly key language extensions and
underlying models, the focus is now on explaining how
these concepts are implicated during the design and run-
time phases. Starting with the design phase, a prototype
system has been developed on top of the NetBeans
platform to allow development of either single user or
distributed collaborative projects. The main differences
between these two project types are in the way they
compile, distribute and execute the produced UI
specifications, as well as in the number of available plugins
engaged by default. For instance in case of collaborative
application, a pre-requisite is the registration of a
compatible Server Side Environment dedicated to
managing special purpose collaborative aspects. Moreover,
in distributed collaborative applications where UI models
need to be accessible by several users over the network the
pre-requisite is a centralized repository for depositing
shared resources (i.e., common models, widget archives,
etc.). Furthermore, additional provisions are required for
distributing a reference to all users that may be engaged in
a particular session (i.e. ‘distributed shortcuts’).
Nevertheless, the design process is unified and common in
terms of steps and custom plugins (i.e., editors for
manipulating CTT, CUI, other models, etc.). We will
discuss the design tool when elaborating the use case.

C. Run-time environment
In order to support the novel features introduced in the

previous sections, advanced software components have
been crafted both at the client and server sides (Figure 4).

Figure 4: Run time environment

Client-side components. At the client side of particular
interest is a runtime infrastructure developed, namely the

‘Platform Server’ (PS) [17]. The platform server is
multifunctional software component which guarantees
smooth and consistent boundary spanning capability by
handling all mappings of abstract to local (i.e., device-
specific) and vice versa. To achieve such mappings the PS
constitutes a virtual software layer between UsiXML
models and the intrinsic libraries of a specific platform. Its
role amounts to undertaking distributed class loading (in
case of managing non-native interactive elements), event
management (as part of facilitating collocated and/or
distributed synchronization), as well as runtime
compilation and interpretation of UsiXML models.
Specifically, the PS undertakes the handling of replication
by managing and maintaining a client-side replication list
containing the replicaIds associated to corresponding
object-references. In case of detected variations (via
‘context-sniffer’ daemon thread) regarding the context of
use, PS is responsible for engaging a re-adaptation process
instructed by the Server-Side Framework (SSF) framework.
Furthermore, another important function assigned to the PS
relates to the process of handling WSL compliant non-
native widgets. In part this amounts to ‘custom events
management’ and ‘widget data model’ handling briefly
discussed in previous section. A separate feature of the PS
relates to collaborative session management, in case of
synchronous or asynchronous co-engagements.
Specifically, each PS handles both grabbing and
distribution of shared actions via triggering and inter-client
(and thus inter-PS) message exchanges in the course of a
session. To support this functionality PS interoperates the
SSF framework supporting session management.

Server-side components. The SSF implements several
generic components such as session management,
notification and web services. Additionally it maintains a
repository of runtime UsiXML models associated to a
particular session (either synchronous or asynchronous).
The SSF also handles low-level session management built
on top of apache axis2 framework, by performing several
functions such as creation, registration, etc. It also maintains
a list with all running sessions. As for UIs utilizing non-
native widgets, the SSF maintains a shared repository with
platform-specific widget libraries and facilitates distributed
class loading.

IV. USE CASE SCENARIO
This section briefly elaborates on a relatively simple but

demanding use case entailing synchronous collaborative co-
play of the ‘tic tac toe’ game. Game co-play is conceived of
as multiuser co-engagement (using different terminals) in a
synchronous session. For purposes of illustration two roles
are assumed - one for players and one for observers.
Observers are assigned read-only access to application’s
shared state. Players can update the shared state/model as
they co-engage synchronously in play. In terms of
platforms, the game is conducted using a conventional
desktop (with JSE) and Android devices. Figure 5 depicts an
instance of the polymorphic UI designer suite.

342

Figure 5: Instance of the polymorphic UI designer

Figure 6: The run-time deployment of the use case

This is an IDE that allows (a) integration of (native or
custom) widgets compiled in accordance to WSL (b) drag &
drop operations to craft abstract UIs (c) specification of
semantic and physical properties of interaction (d) automatic
inspection of the resulting XML code by switching from
design to source code overview. A noticeable feature of the
IDE in design mode (as in Figure 5 depicting the Android
instance) is the palette with the abstract controls. This palette
assembles and presents all interaction elements and resources
(native and custom objects of Figure 3) that have been
integrated (through the process depicted in Figure 1). During
the design phase, designers manipulate abstract controls and
set their properties accordingly for each role- and platform-
specific UI instance. Figure 5 illustrates the abstract class
hierarchy for the player using Android. As shown, an
abstract window is designated as the host of an abstract

Android container (with a label) and 16 abstract buttons each
set to the custom type ‘roundButton’. Abstract and
polymorphic properties of the ‘roundButton’ widget can be
set using the design palette (lower part dialog).

Figure 6 illustrates the run-time details of our use case
scenario. The left-hand and middle UIs correspond to the
two distributed players, while the third UI is the observer’s
instance. All of them are derived from the polymorphic UI
specification process briefly described earlier. As shown,
each is dynamically assembled to link to the appropriate
platform server so as to cope with specific constraints (i.e.,
interaction components, input models, event handling, etc.)
or end user-related parameters (i.e., roles). It is worth
noticing that the UIs exhibit inconsistencies both at lexical
level (i.e., type of buttons) and syntactic level (i.e.,
provisions for social scent in the observer’s UI).

343

Nevertheless, they remain synchronized at all times. As
game co-play progresses, there are various exchanges
between the components of the run-time environment.
Specifically, each operation initiated in a specific device
context triggers its local effects and is also propagated to the
corresponding PS for further processing. The PS informs the
collaboration plug-in so as to update the shared model. In
doing so, the collaboration plug-in notifies all registered PSs,
which in turn initiate the appropriate actions. For instance,
when a player presses a designated button located in a certain
position of the grid and marked with a label, two actions are
implicated - one is to track the change in the button’s label
and the other is to notify the change in the button’s state. For
such ‘local’ actions to be effected across devices, they need
to be propagated to the shared model in the collaboration
plug-in. For our example, the shared data model needs to
implement two abstraction classes – one for tracking changes
in the value of buttons’ label (i.e., sixteen in total in the grid)
and one for tracking changes in the state of each button (i.e.,
true/false for pressed/released respectively). For propagating
updates of the shared model across target vocabularies, a
separate FSM is attached to each polymorphic widget in the
players’ sides. This is not needed for observers as no updates
to shared data are allowed. As the players’ UIs need not be
identical, the consistency model undertakes to define links
between abstract properties of the shared data model and the
properties of the distributed polymorphic instances affected
(i.e., button labels and states, radius for round buttons). This
is achieved by linking an abstract property with the
corresponding property of a particular instance of the UI as
defined in the widget resource model. Accordingly, at
runtime, the PS undertakes the required translation to map
the property to a corresponding API call so that the
designated change is effected locally.

V. CONCLUDING REMARKS
At present, we have a fully implemented version of the

components (models, plug-ins and run-time environment)
introduced earlier as well as working prototypes of several
UIs. Ongoing work concentrates on several fronts. One is
coping with more complex widgets, either domain-specific
or available in advanced toolkits (i.e., visualization). Another
is extending the framework to further enhance its capabilities
with regards to certain affordances such as social
translucence, run-time adaptivity and UI plasticity in
distributed and ubiquitous settings.

ACKNOWLEDGMENTS
The present work is part of the first two authors’ doctoral

research at Catholic University of Leuven (Belgium),
conducted at iSTLab (www.istl.teicrete.gr).

REFERENCES
[1] J. Hill and C. Gutwin, “The MAUI toolkit: Groupware widgets for

group awareness”, Computer Supported Cooperative Work, vol. 13,
Dec. 2004, pp. 539-571, doi:10.1007/s10606-004-5063-7.

[2] L. Choonhwa, S. Helal, and L. Wonjun, “Universal interactions with
smart spaces”, IEEE Pervasive Computing, vol. 5, Jan. 2006, pp.16-
21, doi:10.1109/MPRV.2006.19.

[3] V. Penichet, M. Lozano, J. Gallud, and R. Tesoriero, “User interface
analysis for groupware applications in the TOUCHE process model”,
Adv. Eng. Softw, vol.40, Dec. 2009, pp. 955-964,
doi:10.1016/j.advengsoft.2009.01.026.

[4] A. Savidis and C. Stephanidis, “Developing dual user interfaces for
integrating blind and sighted users: the HOMER UIMS”, Proc. ACM
Conf. Human Factors in Computing Systems (CHI 95), ACM Press,
May 1995, pp. 106-113, doi:10.1145/223904.223918.

[5] A. Savidis, C. Stephanidis, and D. Akoumianakis, “Unifying toolkit
programming layers: a multi-purpose toolkit integration module”,
Proc. Eurographics Workshop on Design, Speci�cation &
Veri�cation of Interactive Systems (DSV-IS 97), 1997, pp. 177-192.

[6] A. Demeure, G. Calvary, J. Coutaz, and J. Vanderdonckt, “The
COMETs inspector: towards run time plasticity control based on a
semantic network”, Proc. Conf. Task models and diagrams for users
interface design (TAMODIA 06), Springer-Verlag, pp. 324-338.

[7] M. Blattner, E. Glinert, J. Jorge, and G. Ormsby, “Metawidgets:
towards a theory of multimodal interface design”, Proc. Int. Conf.
Comp. Soft. and Applic. (COMPSAC 92), Sep. 1992, pp. 115-120.

[8] M. Crease, P. Gray, and S.A. Brewster, “A toolkit of mechanism and
context independent widgets”, Proc. Int. Workshop on Design,
Specification, and Verification of Interactive Systems (DSVIS 00),
Springer-Verlag, 2000, pp. 121-133.

[9] B. Jabarin and T.C.N. Graham, “Architectures for widget-level
plasticity”, Proc. Eurographics Workshop on Design, Speci�cation &
Veri�cation of Interactive Systems (DSV-IS 03), 2003, pp. 124-138.

[10] M. Crease, S. Brewster, and P. Gray, “Caring, sharing widgets: a
toolkit of sensitive widgets”, Proc. HCI’2000, Springer, pp. 257-270.

[11] A. Stanciulescu, “A Methodology for Developing Multimodal User
Interfaces of Information Systems”, Ph.D. thesis, Université
catholique de Louvain, Louvain-la-Neuve, 2008.

[12] Q. Limbourg, “Multi-Path Development of User Interfaces”, Ph.D
thesis, Université catholique de Louvain, Louvain-la-Neuve, 2004.

[13] Q. Limbourg and J. Vanderdonckt, “USIXML: A User Interface
Description Language Supporting Multiple Levels of Independence”,
Proc. ICWE Workshops, 2004, pp.325-338.

[14] G. Calvary, et al. “A Unifying Reference Framework for multi-target
user interfaces”. Interacting with Computers, vol. 15, June 2003, pp.
289-308, doi:10.1016/S0953-5438(03)00010-9.

[15] J.L. Garrido, M. Gea and M.L. Rodríguez, “Requirements
enginnering in cooperative systems”, in Requirements Enginnering
for Sociotechnical Systems, Idea Group, USA, 2005, pp. 226–244.

[16] A.I. Molina, M.A. Redondo, M. Ortega and U. Hoppe, “CIAM: A
methodology for the development of groupware user interfaces”, J.
UCS, vol.14, 2008, pp.1435-1446, doi:10.3217/jucs-014-09-1435

[17] G. Vellis, D. Kotsalis, D. Akoumianakis and J. Vanderdonckt,
“Towards a new generation of MBUI engineering methods:
Supporting polymorphic instantiation in synchronous collaborative
and ubiquitous environments”, in Coyette, A., Faure, D., Gonzalez, J.,
Vanderdonckt, J. (Eds.), Proc. Int. Workshop on User Interface
Description Languages (UIDL 11), 2011 (ISBN 978-2-9536757-1-9).

[18] Q. Limbourg and J. Vanderdonckt, “Addressing the mapping problem
in user interface design with UsiXML”, Proc. Int. Workshop on Task
Models and Diagrams for User Interface Design (TAMODIA '04),
ACM Press, Nov. 2004, pp. 155-163. doi:10.1145/1045446.1045474

[19] C. Appert and M. Beaudouin-Lafon, “SwingStates: Adding state
machines to Java and the Swing toolkit”, Softw. Pract. Exper., vol.
38, Sep. 2008, pp. 1149-1182, doi:10.1002/spe.v38:11.

[20] J. Guerrero, C. Lemaigre, J.M. Gonzalez Calleros and J.
Vanderdonckt, “Model-Driven Approach to Design UIs for Workflow
Information Systems”, J. UCS, vol. 14, 2008, pp. 3160-3173.

[21] B. de Alwis, C. Gutwin and S. Greenberg, “GT/SD: Performance and
Simplicity in a Groupware Toolkit”, Proc. ACM Symp. Engineering
Interactive Computing Systems (EICS 09), ACM Press, Jul. 2009, pp.
265-274, doi:10.1145/1570433.1570483.

344

