
A Model-Based Approach for Developing Vectorial User Interfaces

Jean Vanderdonckt, Josefina Guerrero-Garcia, and Juan Manuel González-Calleros

Université catholique de Louvain, Louvain School of Management, Information Systems Unit
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{jean.vanderdonckt, josefina.guerrero, juan.m.gonzalez}@uclouvain.be

Abstract—This paper presents a model-based approach for
developing vectorial user interfaces to an interactive applica-
tions, whether it is a web or a stand-alone applications. A
vectorial user interface exhibits the capability of being res-
caled in any dimension without any loss of information,
while taking advantage of the screen real estate offered by
the computing platform on which the interactive application
is running. A model describes the vectorial user interface in
order to capture its presentation and behavior in a way that
is independent of any context of use. Implemented as a
browser plug-in, a rendering engine parses this model at
run-time so as to render the user interface bounded with the
domain, thus producing together a running application. This
facilitates platform adaptation, since the interface scales up
or down depending on the screen resolution and user adap-
tation since the model can change from one session to anoth-
er. The interface is then re-rendered with adaptation for the
benefit of the end user. Both platform and user adaptations
contribute to making the web application accessible in a
ubiquitous way.

Keywords: Context of use, Liquid design, Scalability,
Ubiquitous computing, User interfaces, User Interface De-
scription Language, Vectorial interface, Web application.

I. INTRODUCTION

Developing a User Interface (UI) of an interactive ap-
plication poses multiple challenges to the designer and the
developer, especially those of development complexity,
diversity of existing Integrated Development Environ-
ments (IDEs), and the significant amount of programming
skills and usability knowledge required to produce a usa-
ble UI [2][6][13]: markup languages (e.g., HTML), pro-
gramming languages (e.g., C, C++, or Java), communica-
tion skills, usability engineering, among others, are all
important. These difficulties are multiplied when a UI
should be developed for multiple contexts of use [4] such
as multiple categories of users (e.g., having different prefe-
rences, speaking different native languages), different
computing platforms (e.g., a mobile phone, a Pocket PC, a
kiosk, a laptop, a wall screen), and various working envi-
ronments (e.g., stationary, mobile [20]). We therefore de-
fine a context of use as a triple: C = (U, P, E) where U
denotes a user model, P, a platform model, and E, an envi-
ronment model respectively [4].

We hereby refer to a Vectorial User Interface as any
UI that exhibits the capability of being rescaled along any
dimension (horizontally and/or vertically) without any loss

of information, while taking advantage of the characteris-
tics offered by the context of use. A vectorial user inter-
face is equivalent to a vector-based UI since it is graphi-
cally rendered using vector graphics (such as vectorial
shapes in drawing applications) as opposed to raster graph-
ics (such as bitmaps in painting applications). The poten-
tial advantages of a vectorial UI for a web user are [7][11]:
 Platform independence: the same UI can be rendered

indifferently on any platform since its definition does
not refer to any platform-specific peculiarity such as
resolution, absolute positioning of widgets, etc. Con-
sequently, the resulting UI is never subject to pixela-
tion, a process where interpolation is applied in order
to determine a rendering between two raster graphics.

 User interface scalability: the same UI can be rescaled
along any dimension, which is particularly appropriate
for horizontally- or vertically-oriented platforms or
platforms equipped with an accelerometer (e.g., the
Apple iPhone) that rotates the UI depending on its
orientation.
Developing a vectorial UI, e.g. for a web application,

could imply several challenges today:
 For the developer: unless a toolkit is used for this pur-

pose (e.g. Adobe Flash), it is very difficult to develop
vectorial UI since every widget should be individually
drawn in terms of lines, shapes. In addition, the soft-
ware development life cycle of such a vectorial UI
remains mostly an ad-hoc implementation. Instead, it
should go for a step-wise development method, as
recommended in [6]. It is also hard to achieve active
support for dynamic content [15].

 For the designer: the design step is often forgotten for
such UIs since the trend is to “rush to the code” before
designing anything. It is rather difficult for a designer
to design a UI for multiple contexts of use while
avoiding to reproduce multiple UIs for multiple con-
texts of use. Some designers do pay attention to “liq-
uid design”, a reduced form of a graphical UI where
the UI is accommodated depending on the screen reso-
lution, usually relying on Cascading Style Sheets.

 For the end user: the rendering may be slow, re-
source-demanding, usability is not guaranteed [17],
badly or incorrectly produced, or illegible (e.g., the UI
is running on a small screen, but impossible to use be-
cause of its tiny size).

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.24

52

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.24

52

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

In order to address these issues, this paper presents a
model-based approach for developing a vectorial user in-
terface of a web application. Thanks to this approach, a
model of the vectorial UI is produced (in UsiXML format)
that is rendered at run-time thanks to a browser plug-in,
called FlashiXML, thus providing a proof-of-concept.
 The reminder of this paper is structured as follows: in
the ‘state of the art’ Section, existing works are discussed
comparing advantages and disadvantages of current solu-
tions. Section 3 outlines the model-based approach (mod-
els, language, approach) and details the conceptual ele-
ments used to model a vectorial UI. Section 4 introduces,
describes, and motivates FlashiXML, a browser plug-in
that renders a vectorial UI from a UI model specified in
UsiXML. Section 5 exemplifies this approach by demon-
strating some case study. Section 6 concludes the paper
by presenting some avenues of this research.

II. STATE OF THE ART

There have been several attempts to disseminate Inte-
grated Development Environments (IDEs) that support
vectorial UIs where the UI is mostly developed by hand.
SVG is a W3C standard language for describing vectorial
graphics that is itself a delivery target. Most of existing
browsers provide native support for SVG [20]. The varia-
tions in the scripting interfaces in current implementations
remains a major challenge. Therefore, SVG has been used
as a target language for vectorial graphics [20].

The ubiquitous Adobe Flash environment, given that it
is now on nearly all platforms, remained a scripting lan-
guage. Several programming languages have been offered
on top of Flash in order to provide developers with a high-
er order in programming Flash applications.

The open source compiler and programming language
Haxe [12] is proving to be a very effective solution for
developing Flash applications. OpenLazlo (www.openlas-
zlo.org) [18] and Macromedia Flex (www. macrome-
dia.com/go/flex) are the two development environments
for vectorial UIs. Both approaches have common characte-
ristics: the authoring language used was created by them,
they used a XML format, the target language is Macrome-
dia Flash, dynamic aspects are defined using scripts, both
were server oriented and evolved to be client oriented
building Rich Internet Applications (RIAs). But the com-
mon drawback is that every UI is developed by hand.

The Flex server offers a declarative programming me-
thodology for delivering rich Internet applications. Relying
on a n-tier architecture a layer with executable code can be
added to the client machine. Operations and code is stored
in the client machine those reducing server time response
for simple operations. Flex is compatible with other stan-
dards, including: HTML, HTTP(S), XML, SOAP/web
services, CSS, SVG, J2EE, and the .NET platform. A big
advantage of using Flex over other IDEs is that new appli-
cation modules can be easily integrated to the n-tier archi-
tecture. The compatibility to the resulting code, flash,
created by the same society, Macromedia. The script lan-
gue is also compatible with the one used in Flash applica-

tions. Even though, some drawback exist on Flex runs just
in Java application servers, even the simplest example
need a server configuration.

OpenLaszlo applications are made available on the
web either: on a server is stored locally in the client com-
puter or a compiler. The OpenLaszlo architecture is de-
signed to support multiple device types. Its dynamic layout
mechanisms enable simple modifications to such proper-
ties as an application's overall size to be applied by the
platform. This simplifies adapting an application to work
on screens and devices of different size.

An interesting aspect of both approaches is the lan-
guage used as User Interface Description Language
(UIDL), later used for the language selection. On the one
hand, The Macromedia Flex Markup Language (MXML)
[1] is a declarative XML-based language used to describe
UI layout and behaviors, and ActionScript for the Flex
Framework. MXML is used to create client logic for rich
extensible UI components for creating RIAs, as well as
interactive applications. On the other hand, OpenLaszlo
applications [10] uses a XML based specification plus a
java script file. By comparing these two approaches some
conclusions arise: Flex offers a bigger set of graphical
components, OpenLaszlo server is less performance than
java servers, both are solutions depending on their own,
and both need server configuration.

PlastiXML [5] consists of an environment that enable
designers to produce UIs for multiple platform by exem-
plifying variations from one platform to another, but the
resulting UI is not vectorial. Instead, different GUIs are
produced that are switched depending on the platform. In
[7], examples of vectorial UIs are delivered and a method
to define them precisely. As opposed to this approach, we
propose a model-based approach that captures these as-
pects. Pleuß [22,23] also proposes a model-driven ap-
proach for multimedia UIs that supports Flex as output.

III. MODEL-BASED APPROACH FOR VECTORIAL USER

INTERFACES

Although many different approaches have been defined
and used, the community has reached to a relatively global
consensus [14] about the components of a User Interface
(UI) development method. The variations are mainly in the
way and level of details, but not very much in the goals:
 Models. A series of models pertaining to various facets

of the UI such as: domain, presentation, dialog.
 Language. In order to specify different aspects and

related models, a specification language is needed that
allows designers and developers to exchange, commu-
nicate, and share fragments of specifications and that
enables tools to operate on these specifications. These
models are uniformly and univocally expressed accord-
ing to a single Specification Language.

 Approach. An approach refers to the research line or
paradigm to be followed by the method.

 Tools. A suite of software engineering tools that sup-
ports the designer and the developer during the devel-
opment life cycle according to the method.

5353

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

The following subsections respectively address each
item by proposing a solution to this tem, along with its
justification.

A. Approach

In software engineering, specification-based (or model-
driven) approach relies in the power of models to construct
and reason about software systems. This approach is based
on models. The goal of model-based approach, for user
interface development is to propose a set of abstractions,
development processes and tools enabling a engineering
approach of user interface development. The characteris-
tics of an engineering approach are its systematic (devel-
opment based of rational principles), its reproducibility, its
orientation towards quality criteria.

Figure 1. The Simplified Cameleon Reference Framework [4].

Our methodology (Figure 1) structures development
processes into four development steps:
1) Task & Concepts (T&C): describe the various user’s

tasks to be carried out and the domain-oriented con-
cepts as they are required by these tasks to be per-
formed.

2) Abstract UI (AUI): defines abstract containers (AC)
and individual components (AIC) two forms of Ab-
stract Interaction Objects (AIO) [2] by grouping sub-
tasks according to various criteria (e.g., task model
structural patterns, cognitive load analysis, semantic
relationships identification), a navigation scheme be-
tween the container and selects abstract individual
component for each concept so that they are indepen-
dent of any modality.

3) Concrete UI (CUI): concretizes an abstract UI for a
given context of use into Concrete Interaction Objects
(CIOs) [4] so as to define widgets layout and interface
navigation. It abstracts a FUI into a UI definition that
is independent of any computing platform.

4) Final UI (FUI): is the operational 3DUI i.e. any 3DUI
running on a particular computing platform either by
interpretation (e.g., through a Web browser) or by ex-
ecution (e.g., after compilation of code in an interac-
tive development environment.
Model-Driven Development (MDD) approach has

been selected for its characteristics, including but not li-
mited to: Modifiability of the models, Complexity support,
Rigorousness, some reasoning is possible to be unders-
tandable for humans.

B. Models

The present work just affects and extends two levels of
the Framework introduced in previous section, which are:
The CUI and FUI layers. Nevertheless, it benefits from the
whole framework. The CUI model is assumed to be de-
scribed without any reference to any particular computing
platform or toolkit of that platform, thus contributing to
the platform independence characteristic needed for our
solution. For this purpose, a CUI model consists of a hie-
rarchical decomposition of CIOs. A Concrete Interaction
Object (CIO) is defined as any UI entity that users can
perceive such as text, image, animation and/or manipulate
such as a push button, a list box, or a check box. A CIO is
characterized by various attributes such as, but not limited
to: id, name, icon, content, defaultContent, defaultValue,
isVisible, isEnabled, fgColor and bgColor. Each CIO is
then sub-typed into one of the two categories: graphical-
Container for all widgets containing other widgets such as
page, window, frame, dialog box, table, box and their re-
lated decomposition or graphicalIndividualComponent for
all other traditional widgets that are typically found in such
containers. A graphicalIndividualComponent cannot be
further decomposed. The model supports a series of wid-
gets defined as graphicalIndividualComponents such as:
textComponent, videoComponent, imageComponent, im-
ageZone, radioButton, toggleButton, icon, checkbox, item,
comboBox, button, tree, menu, menuItem, drawingCanvas,
colorPicker, hourPicker, datePicker, filePicker, progres-
sionBar, slider, and cursor.

C. Language

A User interface description language (UIDL) is
needed to support the MDD method. In the state of the art
section, MXML and OpenLaszlo were identified to sup-
port vectorial UIs development. However, they are not
generic to be compliant with the requirements of a MDD.
In [26] a number of XML-compliant languages for defin-
ing user interfaces, including vectorial UIs, served for se-
lecting the UIDL. From this review it was found some
limitations of existing UIDLs, including: the set of widgets
cannot be expanded; an interpreter is needed in any case
for supporting other languages; context dependent; tech-
nology dependent; and platform dependent. To these
shortcomings a more general one is added: whenever we
would like to submit an extension of an existing language
there is no guarantee that the Consortium in charge with
that language will consider it. After identifying the short-
comings on existing UIDL languages, the selection went
to UsiXML (USer Interface eXtensible Markup Language)
[13]. The selection of UsiXML for that purpose includes,
among other, the following advantages: Coverage of ele-
ments and models for Model-Driven UI development;
Quality of the semantic definition of the language; and
support for tools. The advantages include:
 Multilingual UI [19], offering the user to select the

language before launching the application.
 Event handling triggering behavior defined internally

(windows transitions) and externally (scripts)

5454

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

 The possibility to execute programs locally (client
oriented) or remotely (server oriented) [16], for in-
stance by having a UsiXML interpreter either locally
or remotely.

 The portability due to the use of a standard target lan-
guage. This includes multiplatform (Flax plug-ins are
available for almost all operating systems) and multi-
device (Flash plug-in exist for mobile devices as well
as desktop computers).

 The selected UIDL that is part in a broader Framework
allowing UsiXML specifications to be rendered in oth-
er UIDLs, such as UIML (www.uiml.org) or XIML
(www.ximl.org) provided that the concepts manipu-
lated have a counterpart in those languages. More
about UsiXML can be found at: www.usixml.org

 There are still some disadvantages in this proposed
solution, which can be listed: the non-correspondence be-
tween the source and target language which means that
any change in the target language need an adaptation of
the system ; once rendered, there is no way to adapt the UI
but just relying on the supported adaptation to screen size
provided by Flash.

IV. A RENDERING ENGINE FOR VECTOR-BASED UIS

A rendering engine for vector-based UIs is presented in
this section that is compliant with the model-based ap-
proach discussed in the previous section. Any UsiXML-
compliant user interface definition can be opened and ren-
dered in this interpreter so as to create the truly working
interface with presentation and dialog. In this running en-
vironment, the UI can be resized at any time to address
some constraints imposed by the computing platforms and
to support some properties of Graceful Degradation of UIs
[7], a sub-property of the Plasticity property [4]. In this
way, any UsiXML-compliant UI can be rendered on any
computing platform equipped with a SVG or Flash plug-in
or player. For this purpose, an underlying mini-toolkit has
been developed in ActionScript in the Macromedia Flash
environment so as to render basic widgets which were not
available natively in the Macromedia Flash environment.
We have decided to implement a rendering engine in the
FlashMX environment [1] that would render a vectorial UI
by interpreting its XML description remotely, such as in
[16][24]. Flash is a widely used tool for creating multime-
dia elements. Flash can generate interactive animations
that deliver considerable visual impact with relatively
small sized files. Flash content is browser independent and
looks the same on all graphical browsers that are equipped
with the necessary Flash plug-in or reader.

Before the simultaneous release of the Flash MX au-
thoring tool and the Flash Player 6, Flash generated con-
tent was inaccessible to many disabled Web users. It was
not possible to add alternative text equivalents to the visual
content for users of screen readers or caption audio content
for users with impaired hearing.

Although Flash presented accessibility barriers for
many people with physical disabilities, in some cases the

use of Flash enhanced accessibility for people with cogni-
tive and learning disabilities. A concept or process is
sometimes considerably easier to understand when it is
presented in a simple, elegant animation rather than ex-
plained in words.

The dynamic generation of vectorial UIs works as fol-
lows: a configuration file is used, containing a series of
parameters describing the application set up, including:

System parameters. They are used to locate the re-
sources needed to generate the UI. When the parameter
standalone is set to false, the server will be in changer to
generate the file dynamically, i.e. those xml files found in
the local folder and/or in the subfolders (UsiXML and
config in Figure 2). Otherwise, when the parameter is set
to true, the file must be edited manually for each aggre-
gated or suppressed element from the list.

Language parameter allows the user to choose the lan-
guage for the UI. Two parameters are included: language
selection to indicate whether language selection is a ser-
vice provided to the final user or not; and language naviga-
tion to indicate user privileges to change or not the lan-
guage at run time.

Figure 2. Dynamic generation of Vectorial User Interfaces

 Navigation Manager. Depending on the application
type and its objectives sometimes is relevant to have appli-
cations with some functionality associated for navigation.
The renderer uses a set of parameters to address ergonomic
aspects of the application (such as allowing or not full
screen presentation). Other parameters serve just to pro-
vide feedback about the system (error messages when ren-
dering), this is more for debugging purposes.

Parameters of the graphical elements of the User Inter-
face. Some rules and parameters are needed in order to
guarantee the way widgets are rendered, while some wid-
gets might be specified in terms of number of pixels, for
instance, an image component, some other use a different
value, for instance, number of characters is used in a text
component. Some heuristics are needed in order to decide

5555

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

how to display the widgets, for instance, using the average
size of images to display all of them with the same size, or
the average number of characters to display harmoniously
a set of text components.

TABLE I. SYSTEM PARAMETERS

Parameter Type Description

standalone Boo‐
lean

Indicates if the application run in
serve mode (false) or standalone
mode (true)

usiXML files loca‐
tion

String File path including the UsiXML to be
loaded

external scripts
file location

String File path containing the scripts that
can be associated to objects

TABLE II. PARAMETERS FOR NAVIGATION

Parameter Type Description

displayWin‐
dowBar

Boo‐
lean

Indicate if the icons bar is displayed or
not on minimized or closed windows

displayMenu Boo‐
lean

Indicate if the menu option is displayed
or not

displayUsiX‐
MLInforma‐
tion

Boo‐
lean

Indicate if the information contained in
the UsiXML is show or not in the menu

displayFla‐
shiXMLInfor‐
mation

Boo‐
lean

Indicate if FlashiXML about information
is displayed or not

displayError‐
Log

Boo‐
lean

Indicate if a menu item link to show
errors caused on generation are added
or not to the menu

allowFileRe‐
loading

Boo‐
lean

Indicate if the UsiXML files are added or
not to the menu

display‐
FullScreen

Boo‐
lean

Indicate if the application is displayed
full screen or not

allow‐
FullScreen

Boo‐
lean

Indicate if the application can switch
from full screen to normal or not

A. Generation of Graphical Elements

So far, widget models were discussed and some basic
rules for their presentation. To assure a correct mapping
between the model specification (stored as a UsiXML file)
and the target language, in this case flash, an interpreter
was built. The first step is to build flash widgets corres-
ponding to UsiXML widgets. The list of Flash components
that are supported includes: button, combo box, check box,
image component, radio button, text component, window,
and box. The properties of flash elements have an impact
on the final rendering. For instance the combo box, Figure
3, is rendered differently when the attribute isDropDown is
set to true (combo box) or false (list box).

Figure 3. Illustration of the graphical elements: Combo Box

The text component (Figure 4) is a particular widget. It
corresponds to the different variation of graphical elements
that handles text (label, textfield, textarea, passwordfield).
Depending on the attributes selected in the UsiXML model
the corresponding rendering is generated by the interpre-
ter. on (Figure 6).

The box (Figure 5) serves as a container for the differ-
ent widgets, this objects is not part of any other vectorial
UI language. It relies, but is not limited, to those used in
Java for layout and containers. Similarly the window con-
cept is also not present. Next section explains how these
elements gather the different graphical elements. The
attribute border width is illustrated in Figure 5, notice how
the size for the content is reduced.

Figure 4. Variations of the text component rendering

Figure 5. A window with the box element

B. Positioning Graphical Elements

So far, objects instantiation has been discussed. This
includes the size of the containers (window and box) the
type of layout desired (for instance, average of their pixel
size). The next step is to create the layout of the UI, one of
the major challenges that were faced in this work. An ex-
ample is used to illustrate this step. Considering the
UsiXML code, shown below, representing two windows
with a same structure, a box with a text component and a
button, the sequence diagram is shown in Figure 7.

Figure 6. References to the widgets.

5656

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

Once a UsiXML is loaded (1), all the windows ele-
ments are stored in a table (2). The CIOManager is in
charge of instantiating windows (3). The FUIwindow re-
quest a Box instantiation (4), the CIOManager generates a
Box instance (5) and a message to the FUIWindow (6) to
add the Box. The FUIBox requires a text component (7).
The CIOManager generates a Text Component instance
(8). This process continues until no more elements exist in
the file (12). The order in which windows are created is
depicted in Figure 6. That corresponds to the hierarchical
structure of the source file. Notice how all elements keep a
reference to the CIOManager.

Figure 7 Sequence diagram of the render engine.

Figure 10 and 14 show the result of an application on-
line for a Declaration of a new company to financial ad-
ministration. The objective is to test the possibility of as-
sociating transitions using “tabs” to go from one page to
another one. For this example windows transitions, Figure
8, were used.

C. Behavior definition

Behavior is defined as a ECA (event, condition action)
rule. The renderer supports two types of actions (method
call and window transitions). The events list is limited to
those events supported in flash. Conditions are stored as
strings. Actions Methods calls are links to scripts. Special
scripts were created to support window transitions, which
includes: open, close, fadeIn, BoxIn, BoxOut and fadeout
(Figure 8, 9).

Figure 8. Set of Window transitions implemented

Figure 9. Fadeout Window transition

Figure 10. Rendering of a form.

Figure 11. Rendering of a form.

D. Transformation rules

Transformation rules from the models to Flash code
considered two scenarios: a flash element exist and it was
possible to apply a one to one mapping from the CUI ele-
ment and flash; or there were no correspondence between
the CUI element and Flash. In the second scenario there
were some attributes that were irrelevant for the inter-
preted and could be ignored. Those that were more rele-
vant then were built as follows:
 The CUI element can be the result of the composition

of existing flash widgets
 The CUI element cannot be the result of a composition

of Flash components. Consequently an implementation
is needed
More details and the software can be obtained at Fla-

shiXML web site [8], the tool developed as a proof-of-
concept.

5757

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

E. Context adaptation

The multidevice capability of this work is well illu-
strated in Figure 12. In this case the rendering of the UI
varies its size depending on the screen size available, so
the window (called calculator) is fully rendered in two
context of use (Smart Phone and Pocket PC). In this ex-
ample just a resize of the UI is appreciated but more com-
plex rules could be apply, notably those of graceful degra-
dation [7] that might replace UI components more drasti-
cally when a change in the context is reported. Another
example of context adaptation refers to language variations
of the UI. This means that the model should be able to
capture those variations and consequently support adapta-
tion to the user needs, in this case its language.

Figure 12. Rendering of a calculator on a SmartPhone and PocketPC.

V. CASE STUDY: VIRTUAL STORE

In this section a case study is presented as proof of the
concept discussed in this paper. The Virtual Store is a
common application used to test ergonomics of Informa-
tion Systems. Than the first phase, Figure 13, the user se-
lects a CD and drags it to the shopping chart. Is the CD is
drop in the shopping chart then it became part of the shop-
ping list. The cost of the CDs is automatically updated
when a CD is added or removed. An excerpt of the corres-
ponding code illustrates the specification of the window
transition and the behavior definition.

<button defaultContent="Go">
 <behavior>
 <event eventType="depress" eventContext="button_go" />
 <condition/>
 <action id="actI8">
 <transition transitionIdRef="Tr1" />
 </action>
 </behavior>
</button>

…..
<graphicalTransition id="Tr1" transitionType="fadeOut">

 <source id="button_go" />
 <target id="box_all1" />

 </graphicalTransition>

Figure 13. Virtual Store: Music selection window.

Once selected the CDs, the user pass to the checkout
screen, Figure 14, where the customer introduces its per-
sonal data, credit card data and send its information.

Figure 14. Virtual Store checkout window.

An excerpt of the code that corresponds to the check-

out screen is shown below.

<box type="horizontal">
 <textComponent defaultContent="Name :"/>
 <textComponent textSize="16"/>
</box>
<box type="horizontal" id="box_text2">
 <textComponent defaultContent="Street :" />
 <textComponent textSize="16" />
</box>
<box type="horizontal">
 <textComponent defaultContent="City :" />
 <textComponent textSize="16" />
</box>
<box type="horizontal">
 <textComponent defaultContent="Card type :" />
 <ComboBox>
 <item defaultContent="VISA"/>
 <item defaultContent="MASTERCARD"/>
 </comboBox>
</box>
<box type="horizontal">
 <textComponent defaultContent="Total price :" />

5858

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

 <textComponent defaultContent="25 euros" />
</box>
<box type="stack">
 <button defaultContent="Send data" />
</box>

VI. CONCLUSION

The objective of the present work was to contribute on
the life cycle UI development for vectorial UIs. Particular-
ly by reducing the time needed to maintain and update a
UI. Two aspects of the proposed method aimed at contri-
buting to this objective. The first refers to the selected tar-
get language, Macromedia Flash. That assures portability
of the solutions generated in FlashiXML. The second as-
pect corresponds to the need of an UIDL independent of
the context of the execution.

The future directions may include: improve the layer
that interconnects the UI with the scripts, support dynamic
changes on the user interface and a graceful degradation
[9] when needed, investigate how to integrate new releases
of Flash for Rich Internet Applications.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the ITEA2 Call 3
UsiXML Project under Contract #2008026, the Alban program
supported by European Commission, and the CONACYT pro-
gram supported by the Mexican government. We also thank You-
ri Vanden Berghe for implementing FlashiXML, as reported in
[27].

REFERENCES
[1] Allaire, J., Macromedia Flash MX- A next-generation rich client,

White paper, Macromedia, March 2002, available on-line at:
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf

[2] Barry, C. and Lang, M., A Survey of Multimedia and Web Devel-
opment Techniques and Methodology Usage, IEEE Multimedia,
Vol. 8, No. 2, 2001, pp. 52–60.

[3] Bodart, F. and Vanderdonckt, J., On the Problem of Selecting
Interaction Objects, Proc. of BCS Conf. HCI’94 "People and Com-
puters IX" (Glasgow, 23-26 August 1994), Cambridge University
Press, Cambridge, 1994, pp. 163–178.

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
and Vanderdonckt, J., A Unifying Reference Framework for Multi-
Target User Interfaces, Interacting with Computers, Vol. 15, No. 3,
June 2003, pp. 289–308.

[5] Collignon, B., Vanderdonckt, J., and Calvary, G., An Intelligent
Editor for Multi-Presentation User Interfaces, Proc. of 23rd ACM
Symposium on Applied Computing SAC’2008 (Fortaleza, 16-20
March 2008), ACM Press, New York, 2008, pp. 1634–1641.

[6] Contantine, L. and Lockwood, L., Software for Use: A Practical
Guide to the Models and Methods of Usage-Centred Design, Addi-
son-Wesley, Reading, 1999.

[7] Dragicevic, P., Chatty, S., Thevenin, D., Vinot, J-L., Artistic Re-
sizing: A Technique for Rich Scale-Sensitive Vector Graphics,
Proc. of ACM Symposium on User Interface Software Technology
UIST’2005, ACM Press, New York, 2005, pp. 201–210.

[8] FlashiXML web site, available on-line at: http://www.usixml.org/
index.php?mod=pages&id=24

[9] Florins, M., Montero, F., Vanderdonckt, J., and Michotte, B., Split-
ting Rules for Graceful Degradation of User Interfaces, Proc. of 8th
Int. Working Conf. on Advanced Visual Interfaces AVI’2006 (Ve-
nezia, 23-26 May 2006), ACM Press, New York, 2006, pp. 59–66.

[10] Flex overview, Adobe Systems Incorporated, 2009, available on-
line at http://www.adobe.com/products/flex/overview/

[11] Forbrig, P., Müller, A. and Cap, C.H., Model-based user interface

design using markup concepts., Proc. of 8th Int. Workshop on De-
sign, Specification, Verification of Interactive Systems DSV-
IS’2001 (Glasgow, 13-15 June 2001), LNCS, Vol. 2220, Springer-
Verlag, Berlin, 2001, pp. 16–27.

[12] Haxe Development Document, HaXe, 2009, available on-line at:
http://haxe.org/doc

[13] Lang, M. and Fitzgerald, B., New Branches, Old Roots: A Study of
Methods and Techniques in Web/Hypermedia Systems Design, In-
formation Systems Management, Vol. 23, no. 3, 2006, pp. 62–74.

[14] Limbourg, Q., Vanderdonckt, Michotte, B., Bouillon, L., and Lo-
pez, V., UsiXML a language supporting multi-path development of
user interfaces, Proc. of 9th IFIP Working Conf. on Engineering for
Human-Computer Interaction jointly with 11th Int. Workshop on
Design, Specification, and Verification of Interactive Systems
EHCI-DSVIS’2004 (Hamburg, 11-13 July 2004), LNCS, Vol.
3425, Springer-Verlag, Berlin, 2004, pp. 200–220.

[15] Luyten, K., Vandervelpen, C., and Coninx, K., Adaptable user
interfaces in component based development for embedded sys-
tems., Proc. of the 9th Int. Workshop on Design, Specification,and
Verification of Interactive Systems DSV-IS’2002 (Rostock, 12-14
June 2002), LNCS, Vol. 2545, Springer, Berlin, 2002, pp. 44–58.

[16] Moshchuk, A., Gribble, S.D., and Levy, H.M., Flashproxy: trans-
parently enabling rich web content via remote execution, Proc. of
6th Int. Conf. on Mobile systems, applications, and services Mo-
biSys’2008 (Breckenridge, 17-20 June 2008), IEEE, pp. 81–93.

[17] Nielsen, J., Flash: 99% bad, AlertBox, 29 October 200, available
on-line at: http://www.useit.com/alertbox/20001029.html

[18] OpenLaszlo Application Developer's Guide, Laszlo Systems Inc.,
2009, available online at: http://www.openlaszlo.org/lps4.2/docs/
developers/architecture.html

[19] Parameswaran, V., Multilingual Flash applications, Proc. of ACM
Conf. on Computer Graphics and Interaction Techniques SIG-
GRAPH’2002 (San Antonio, 21-26 July 2002), ACM Press, New
York, p. 316.

[20] Paternò, F. and Giammarino, F., Authoring interfaces with com-
bined use of graphics and voice for both stationary and mobile de-
vices, Proc. of ACM Conf. on Advanced Visual Interfaces
AVI’2006, ACM Press, New York, 2006, pp. 329–333.

[21] Paulson, L.D., Building Rich Applications with Ajax, IEEE Com-
puter, Vol. 38, No. 10, Oct. 2005, pp. 14–17.

[22] Pleuß, A., MML: A Language for Modeling Interactive Multime-
dia Applications, Proc. of 7th IEEE Int. Symposium on Multimedia
ISM’2005 (Irvine, 12-14 December 2005), IEEE Computer Socie-
ty, Los Alamitos, 2005, pp. 465–473.

[23] Pleuß, A., Vitzthum, A., and Hussmann, H., Integrating Heteroge-
neous Tools into Model-Centric Development of Interactive Ap-
plications, Proc. of 10th Int. Conf. on Model Driven Engineering
Languages and Systems MoDELS’2007 (Nashville, 30 September
– 5 October 2007), Lecture Notes in Computer Science, Vol. 4735,
Springer-Verlag, Berlin, 2007, pp. 241–255.

[24] Puerta, A.R. and Hu, M., UI Fin: a process-oriented interface de-
sign tool, Proc. of ACM Conf. on Intelligent User Interfaces
IUI’2009, ACM Press, new York, 2009, pp. 345–354.

[25] Rossi, G., Pastor, O., Schwabe, D., Olsina, L., Web Engineering:
Modelling and Implementing Web Applications, Human-Computer
Interaction Series, Springer, Berlin, 2008.

[26] Souchon, N. and Vanderdonckt, J., A Review of XML-Compliant
User Interface Description Languages, Proc. of 10th Int. Conf. on
Design, Specification, and Verification of Interactive Systems
DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in Comp.
Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 377–391.

[27] Vanden Berghe, Y., Etude et implémentation d'un générateur d'in-
terfaces vectorielles à partir d'un langage de description d'interfac-
es utilisateur, M.Sc. thesis, Université catholique de Louvain, Lou-
vain-la-Neuve, Belgium, September 2004.

[28] Vanderdonckt, J., A MDA-Compliant Environment for Developing
User Interfaces of Information Systems, Proc. of 17th Conf. on
Advanced Information Systems Engineering CAiSE'05 (Porto, 13-
17 June 2005), Lecture Notes in Computer Science, Vol. 3520,
Springer-Verlag, Berlin, 2005, pp. 16–31.

5959

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

