
Prototyping Multi-platform Software Using the
UsiXML4ALL Tool

ABSTRACT
In the development of multi-platform applications, one of the
most challenging problems is the prototyping of the user interface
(UI), e.g. the support to rapidly build different final look and feel
possibilities among the available platforms. This paper presents
UsiXML4ALL, a software tool developed to facilitate the creation
of multi-platform applications prototypes. UsiXML4LL acts as a
renderer, mapping concrete UI’s described in UsiXML to multiple
platforms, and also as a connector, linking the rendered UI to
application logic code developed possibly in multiple
programming languages. The goal is to allow a consistent look
and feel and full functionality of an application over various
different platforms. UsiXML4ALL is intended to support not only
the prototyping of new (multi-platform) applications but also the
migration of existent applications to a multi-platform
environment.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Evaluation/methodology, Prototyping.

General Terms

Design, Human Factors.

Keywords

Multi-platform application, UsiXML, User Interface Rendering,
Rendering Tool.

1. INTRODUCTION
Computer software development has nowadays as an important
requirement the possibility of execution in more than one
platform, either through desktop computer, handhelds or mobile
phones.

This situation creates a new challenge to interactive software
developers, including the need for application prototyping and
interaction testing in many available platforms. This way, user
interface developers want to be able to validate their work in a
simple way, using supporting tools to rapidly build different final
look and feel possibilities among the available platforms. In order
to solve this problem, the possibility of multi-platform UI

prototypes generation with minimal code alteration, making
possible the interaction validation, would be a great benefit to UI
designers.

Our approach to address this problem is the utilization of plastic
user interfaces, capable of adapting themselves to different use
contexts, in the creation of multi-platform UI prototypes.
Specifically, we use High-level User Interface Descriptions
(HLUID), which enable the definition of UI’s in a platform
independent form. Among the available HLUID’s (see section 2),
UsiXML [13] is based on the Cameleon reference framework [6],
allowing the description of UIs for multiple use contexts.

This paper presents UsiXML4ALL, a software tool developed to
facilitate the creation of multi-platform applications prototypes.
UsiXML4LL acts as a renderer, mapping concrete UI’s described
in UsiXML to multiple platforms, and also as a connector, linking
the rendered UI to application logic code developed possibly in
multiple programming languages. The goal is to allow a consistent
look and feel and full functionality of an application over various
different platforms. UsiXML4ALL is intended to support not only
the prototyping of new (multi-platform) applications but also the
migration of existent applications to a multi-platform
environment.

The paper is structured as follows: firstly, we discuss the
challenges and problems of multi-platform software development,
and some approaches to resolve this problem. Then, we describe
the main concepts of UsiXML4LL (e.g. its architecture and some
implementation details), discussing its features and benefits, and
how to use it. An actual multi-platform prototype example
illustrates the process of multi-platform UI rendering and
multilanguage application logic connection. Some concluding
remarks and future work are presented in the final section.

2. MULTI-PLATFORM SOFTWARE

DEVELOPMENT
Recent years have seen the evolution of computational
technology, which has allowed the development of many devices,
providing users with access to processing power in different
situations. This context has transformed the possibility of software
execution in multiple platforms in an important requirement,
proposing a new challenge for developers of interactive
applications [19].

Within this challenge software developers face yet another
problem: how to create multi-platform application prototypes, for
testing purposes, without a great programming effort?

This situation has become a major issue, because applications
prototypes are an important step in the development process,
specially in a multi-platform environment, where the interaction
technique must be also tested, in addition to the application itself.
Indeed, the creation of multi-platform prototypes is almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’07, November 12–15, 2007, Nagoya, Japan.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

Jean Vanderdonckt
Cross-Out

impracticable without any support tool, due to both necessary
work and technological knowledge of a developer in order to
create applications for each device.

To address this problem, one approach is the usage of multi-
platform UI development techniques in the UI prototyping
creation process. A straightforward solution is the usage of plastic
user interfaces, capable of being executed in multiple use
contexts. Specifically, in this paper the term multi-platform
corresponds to the definition of context of usage within the scope
of plastic user interfaces, enclosing multiple devices, although
some works consider also multiple modalities (e.g., graphical
interface, voice interface and so on) and multiple environmental
attributes existing when the software is being executed (e.g., light
conditions, user profile). The main goal of plasticity is to
accomplish these requirements, preserving the usability of the
application.

In order to develop plastic user interfaces, different techniques
have been proposed. These propositions can be classified
according to the World Wide Web (W3C) note on authoring
technique for device independence [3], which identifies three
classifications for authoring techniques: single authoring,

multiple authoring and flexible authoring. A brief description of
each one of these categories is [21]:

- Multiple authoring: The developer creates a specific
version of the application for each device or device
category. This situation, which includes (re)creation
and maintenance for each platform, is extremely
costly, and could result in users having many
different versions of applications on different devices
[7], but also provides the maximum control over the
results.

- Single authoring: In this category, only one interface
implementation is created, which is adapted to a
specific device before being presented to the user.
Single authoring techniques can be subdivided in

techniques that use platform independent

vocabularies or toolkits, like AUIML [4] or UIML

[1], techniques that extend established markup

languages, as RIML (developed as part of the
Consensus Project [8]) or techniques which use

model-based user interface development, as XIML
[20] or UsiXML [13].

- Flexible Authoring: Situation where the developer
combines single authoring and multiple authoring
techniques.

In this work, our solution approach is a model-based user
interface development single authoring technique, using a High-
Level User Interface Description Language to allow the design of
multi-platform user interfaces.

A solution using HLUID’s was chosen because UI description
languages have been widely used in multi-platform UI
development, mainly because they abstract the user interface
description, providing a uniform way to develop multi-platform
and even multimodal user interfaces. Besides that, the
characteristic shared by many HLUID’s, which is to be a XML-
based declarative language, makes these languages easy to be

learned and understood, having potential to be adopted by a large
developer community.

We adopt a model-based approach because it allows us to work in
many different abstraction levels (e.g., task, abstract user
interface, concrete user interface) of the same description, having
the choice between different approaches in the creation of multi-
platform user interfaces.

3. USER INTERFACE EXTENSIBLE

MARKUP LANGUAGE - UsiXML
Different High Level User Interface Description Languages have
been proposed in order to design multi-platform user interfaces,
like TERESA [19], UIML [1], XIML [20] and WSXML [11]. It is
not the purpose of this paper to investigate these languages, and a
deeper analysis can be found in [13] and [22].

Among the existent HLUID’s, we have chosen UsiXML because
it is a language specially intended for context sensitive UI’s [13],
having potential to become a w3c standard and being supported
by an active and international research community.

The User Interface eXtensible Markup Language (UsiXML) is a
UI description language which pursues the goal of capturing the
essential properties of interest that turn out to be vital for
specifying, describing, designing and developing such UI’s [13].

In order to achieve these goals, UsiXML is based on the four
abstraction levels of the Cameleon reference framework [6],
which allows the description of a context-sensitive UI design
cycle, as described by Figure 1.

Figure 1. The four basic levels of the Cameleon reference

framework [13].

The four basic levels existent in this framework are [13]:

- Final User Interface (FUI): UI running on a
particular platform either by interpretation or by
execution.

- Concrete User Interface (CUI): abstracts the FUI into
a UI definition that is independent of any computing
platform.

- Abstract User Interface (AUI): abstracts the CUI into
a UI definition that is interaction modality
independent (e.g., graphical/vocal interaction).

- Task and Concepts: highest level, where the user task
is defined based on his viewpoint, along with the
various objects that are manipulated by it.

In the Cameleon Reference Framework, development steps are
obtained in vertical or horizontal transformations. Vertical
transformations (reifications) define processes in that the output is
a UI model which is more concrete than the model used as input.
In horizontal transformations (translations), the model received as
output has the same level of abstraction than the one used as
input, but is defined for another use context.

In order to represent the abstraction levels defined on the
framework, UsiXML defines the following concepts [13].

The Task Model describes the user tasks that can be performed in
an interaction with the computational system. These tasks are
modeled in UsiXML with an extended version of the
ConcurTaskTree (CTT) notation [18]. Within this representation,
a task model is composed by tasks and relationships, where the
task can be described by a name, a type and its frequency, and the
relationships can be of two kinds, decomposition and temporal.

The Domain Model defines the real world concepts and its
associations, as understood by the users. In UsiXML, the existing
concepts of the domain model are described in the same way as a
UML class diagram. Among the existing concepts are classes,
attributes, methods and relationships between the domain objects.

To allow the specification of content independent user interfaces,
UsiXML defines a Resource Model, which specifies the UI
content, like messages and images, facilitating the UI adaptation
to different use contexts.

A Context Model describes the entities which may influence the
execution of an interactive task with the user interface. The
context model is supposed to capture any relevant information of
the use context where the application is being executed, being
composed by an user model, which classifies the existing users
into stereotypes, a platform model, which captures attributes of
the platform/hardware combination, and a ambient model, which
defines interesting properties of the current environment.

The Abstract User Interface (AUI) represents a canonical
expression of the user interface, in a way that is independent of
any modality or computing platform. An AUI is composed of
abstract interaction objects (AIO), which abstract components that
are present in most platforms, like windows and buttons for
graphic platforms.

The Concrete User Interface (CUI) allows the specification of an
user interface definition in a modality dependent, platform
independent way, making possible the UI rendering to multiple
platforms. A CUI is populated by Concrete Interaction Objects

(CIO), which contain in its definition information about its
characteristics. A CUI layout is defined without any absolute
position information, but in a hierarchical manner, allowing the
specification of position relations between elements. In addition
to the components definition, a CUI allows the specification of
the UI dynamic behavior, through a navigation and a event/action
definition language [13].

In order to clarify the CUI concept, an example is shown in Figure
2, which is the specification of a CUI containing a window with
two elements, a text field (textComponent) and a button. It can be
observed that each component definition contains also its
attributes, like id and name for the button.

 Figure 2. UsiXML CUI specification [13].

4. RELATED WORK
The accomplishment of multi-platform UIs is also the goal of
some related works in the literature, which can be classified in
two categories: a) tools working with UsiXML UI descriptions
and b) UI rendering tools, for UsiXML or other UI models.

Among the projects which use UsiXML, SketchiXML [9] can
generate a UsiXML Concrete UI (CUI), receiving as input hand
sketched UI descriptions, having as main goal the creation of
evolutionary UI prototypes. Working with another kind of input,
GrafiXML [12] is a visual designer which allows the creation of
CUI specifications.

In the category of UI rendering tools, QTKiXML [10] can map
UsiXML description to the Tcl-Tk language. With the same
objective, FlashiXML [5] can also map UsiXML descriptions, but
to UI’s described in vectorial mode, being interpreted by Flash or
SVG plug-ins. InterpiXML [16] performs the mapping of
UsiXML CUI descriptions using Java Swing UI components.
Using another UI languages, Uiml.NET [14] and TIDE [2] map
user interfaces specified in UIML [1] to the .Net and Java
platform respectively. TERESA (Transformation Environment for
InteRactivE System representations) [15] allows the design of
multi-platform UI with the utilization of TeresaXML UI
descriptions. Also in this category, the MONA project [21] has
developed a single authoring tool which can be used to create
multimodal user interfaces.

UsiXML4ALL is similar to the works presented above, because it
explores the design of multi-platform applications using UsiXML.
As a differential, UsiXML4ALL has also as a goal the possibility
of the rendered user interface connection with application logics
developed in multiple programming languages.

5. UsiXML4ALL
The rendering tools presented in the last section have some
limitations. They don’t address the problem of the connection
between the rendered user interface and the application logic,
allowing, in the majority of cases, only the connection to
application logic in a specific programming language.

Due to the limitation of these tools to a specific technology, its
utilization in real world software prototyping is made difficult,
since interactive tests are less effective because of the absence of a
connection to the application logic. In this situation, the developer

would benefit from a tool that could permit UI connection with
application logic developed in multiple programming languages,
because this feature would enable the creation of multi-platform
prototypes independent from the language being used in the
application development.

For example, when an application developed in C# must be
expanded to support new platforms, like a mobile platform, the UI
developers have to learn how to implement user interfaces in this
specific platform in order to create the first interactive prototypes.
Another solution would be the utilization of a UI rendering
support tool, but then a specific tool that supports C# would have
to be found.

UsiXML4ALL is a rendering tool that outcomes these problems,
making possible UI rendering in multiple platforms. More,
UsiXML4ALL supplies as differential the possibility of
application logic connection in multiple programming languages.

The main goals of UsiXML4ALL are to make possible CUI
UsiXML descriptions rendering to multiple platforms, to allow
logic application connection to multiple programming languages
and to have an extensible architecture, being able to be extended
to new use contexts.

The proposed architecture is shown in Figure 3. In this
representation, dotted lines describe the user interface rendering
process, and normal lines the logic application connection.

Figure 3. UsiXML4ALL Architecture.

In order to perform the UI rendering, UsiXML4ALL receives as
input a CUI UsiXML description (UsiXML UI in Figure 3), and
forwards it after validation to the target platform rendering plug-in
(Platform 1 Plug-in in Figure 3). The rendering plug-in is
responsible for the UI components instantiation, being the
application logic method calls redirected to the UsiXML kernel
(Translation Process in Figure 3).

To connect the UI to its application logic, the UsiXML4ALL
kernel (Translation Process in Figure 3) receives methods
invocations and translates them to a language independent format.
This description is forwarded to a plug-in for the target
programming language (Language 1 Connector in Figure 3),
which calls the method in the application logic being executed.

The rendering plug-ins (Platform Plug-in 1 and 2 in Figure 3)
have the task of mapping the user interface UsiXML CUI
description to a final user interface in a specific platform.

In order to accomplish this task, the rendering algorithm
hierarchically covers the CUI description contained in the
UsiXML file, instantiating the contained components with its
specified characteristics.

During the rendering process, the user interface content is
obtained in the UI resource model, and the necessary application
logic methods are obtained in the UI domain model.

To connect with the logic application, UsiXML4ALL has the
definition of logic connectors (Language 1 and 2 Connector in
Figure 3). The connectors are responsible for receiving the
description of the called method, translate it to the logic
application programming language, and invoke it.

In order to perform this task, the connector is subdivided in two
different parts, the first one developed in Java, and the second
developed in the target programming language. These two parts
are connected by calls made through the Java Native Interface

(JNI), which makes possible the connection between Java and
other programming languages applications.

In this process, the method description is passed through JNI, and
reflection techniques are then used to realize the method call in
the target programming language, based on its name and
attributes.

6. CASE STUDY: MULTI-PLATFORM

CALCULATOR
To evaluate the first implementation of UsiXML4ALL, an
example prototype was developed: a multi-platform calculator.
The goal was the UI rendering in three different platforms, Java

Swing and Winforms for a desktop version of the application, and
Java Swing also for its mobile version, using the J2ME Connected

Device Configuration (CDC). In addition to that, all UI’s should
be able to connect to two different application logics, in Java and
C#.

To this, a UsiXML CUI description of the calculator UI was
created. The application logics in Java and C# were developed,
both implementing the same interface, with one single method,
called buttonPressed(). In the execution of the application, when
the user presses one button in the calculator UI, a method call is
transmitted to the UsiXML4ALL kernel, which translates it at
runtime to the target application logic, returning its result to the
UI.

In order to describe the user interface, a UsiXML file containing
the calculator CUI description was created. This file contains not
only the UI components definition, but also its content and
dynamic behavior specification. A sample of the calculator’s user
interface UsiXML code is presented in Figure 4.

In Figure 4, a part of the calculator CUI description can be seen.
In this description there is a window (window element), which
uses a flowbox layout manager (flowbox element), and is
composed by a display (inputText element) and buttons (button

element).

Figure 4. Calculator UsiXML description.

In the calculator application, the specified events refer to the
operation of clicking in one of the calculator’s buttons. In this
situation, the method buttonPressed() must be invoked in the
logic application, receiving as return value the value that must be
displayed in the calculator.

However, to maintain programming language independence, the
CUI UI description directs its methods invocations to
UsiXML4ALL, informing its name and parameters. This
definition is translated to the application logic programming
language being executed, and the method is invoked. Figure 5
shows an example of the source code necessary to perform a
method call in a language independent manner. In Figure 5, the
method buttonPressed declared in the class
br.inf.ufrgs.calc.logic.CalculatorLogic is prepared and invoked,
using for that the logicConector class, which is based on the
Command GoF design pattern.

Figure 5. Method invocation source code.

In this way, a prototype for the three different platforms can be
created, and it can be tested with logic application developed in
programming languages. Having as example Figure 6, 6 different
UI-application logic combinations could be created (A,1; B,1;
A,2; B,2; A,3; B,3). In this case, the mobile version of the user
interface could be connected to a C# source code only if the
device used to display the user interface could execute C#
applications.

In practice, to perform this operation, the application logic code
has to be developed, providing the interface with the methods to
be called by the UI. In the situations presented in the example,

this is done by the creation of a .jar file for the Java application
logic, and a .dll library for the C# version.

With the application logic interface defined, the user interface can
be created in a UsiXML file, which will declare the UI structure,
behavior and the signature of the application methods to be called.

In order to change the user interface platform, as in switching
from A1 to A2 in Figure 6, the only operation needed is to change
the execution parameters of UsiXML4ALL, specifying the
renderer to be used.

In the case of changing from A1 to A3, a different tool has to be
used, because the current version of UsiXML4ALL has two
implementations, for desktop and for mobile platforms, as show in
Figure 6.

To change the logic application being used, as in A1 to B1 in
Figure 6, again the only operation needed is a parameter change,
specifying the logic connector to be used, as long as the two
application logic versions implement the same interface.

Figure 6. Example application.

7. CONCLUSIONS AND FUTURE WORK
A practical approach to the development of multi-platform
applications prototypes was introduced, and the first version of
UsiXML4ALL was presented. UsiXML4ALL acts as a UI
renderer in multiple platforms, and also allows the UI connection
to application logic developed in multiple programming
languages. This tool has potential to stimulate the utilization of
HLUID’s in the prototyping of multi-platform applications, as
much in the development of new applications, as in the migration
of legacy applications to a multi-platform environment.

Future work consists in the evolution of UsiXML4ALL, allowing
the creation of UI’s to other (conventional or not) devices and
platforms, in addition to multimodal UI’s.

Examples of devices/platforms we intend to investigate are mobile
phones, smartphones, PDA’s, web-based interfaces, desktop
interfaces and even XO laptops from the OLPC Project [17].

The final objective is to allow the creation of UsiXML-based user
interfaces for a great number of platforms and devices, and also
expand the number of supported programming languages. In
particular, our work aims to provide a tool which can be used in
actual user interface prototyping in such a diversity of contexts of
usage.

Another interesting possibility is the investigation of
UsiXML4ALL as a support for the prototyping of multimodal
user interfaces, enabling not only device-independent presentation
but also new interaction modalities like voice or gesture. In this
case, the basic difference would be the adaptation of the rendering
process to these new interaction modalities.

8. ACKNOWLEDGMENTS
This research is partially funded by CNPq (LIFAPOR/CNPq-
Grices Project).

9. REFERENCES

[1] Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams,S.
M., and Shuster, J. E. “UIML: An Appliance-
IndependentXML User Interface Language.” Proceedings of
the 8th International WWW Conference. Toronto, Canada.
11-16 May 1999. Elsevier Science Publishers.

[2] Ali, M.F., Pérez-Quiñones, M.A., Abrams, M., e Shell, E.
Building Multi-Platform User Interfaces With UIML. In
Proceedings of 2002 International Workshop of Computer-
Aided Design of User Interfaces: CADUI'2002.
Valenciennes, France.

[3] Authoring Techniques for Device Independence. W3C
Working Group Note 18 February 2004.
http://www.w3.org/TR/2004/NOTE-di-atdi-20040218/

[4] Azevedo, P., Merrick, R., Roberts, D. "OVID to AUIML -
User Oriented Interface Modeling."
http://math.uma.pt/tupis00/submissions/azevedoroberts/azev
edoroberts.html

[5] Berghe, Y. Etude et implémentation d'un générateur
d'interfaces vectorielles à partir d'un langage de description
d'interfaces utilisateur, M.Sc. thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium, September 2004.

[6] Calvary, G., Coutaz, J. Thevenin, D. Limbourg, Q., Bouillon,
L. Vanderdonckt, J. A Unifying Reference Framework for
Multi-Target User Interfaces, Interacting with Computers,
Vol. 15, No. 3, June 2003, pp. 289-308.

[7] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Souchon, N., Bouillon, L., Florins, M., Vanderdonckt, J.
Plasticity of User Interfaces: A Revised Reference

Framework. In Pribeanu, C., Vanderdonckt, J. (Eds.),
Proceedings of 1st International Workshop on Task Models
and Diagrams for User Interface Design TAMODIA'2002
(Bucharest, July, 18-19, 2002), Academy of Economic
Studies of Bucharest, INFOREC Printing House, Bucharest,
pp. 127–134, 2002.

[8] Consensus Project. http://www.consensus-online.org/

[9] Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q.
SketchiXML: Towards a Multi-Agent Design Tool for
Sketching User Interfaces Based on UsiXML. In Proc. of
Tamodia’2004.

[10] Denis, V. Un pas vers le poste de travail unique: QTKiXML,
un interpréteur d’interface utilisateur à partir de sa
description, M.Sc. thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, September 2005.

[11] Elting, Ch., Zwickel, J.and Malaka, R., Device-Dependent

Modality Selection for User Interfaces – An Empirical Study,
in Proceedings of 6th Int. Conf. on Intelligent User Interfaces
IUI’2002 (January 13-16, 2002, San Francisco), ACM Press,
New York.

[12] Lepreux, S., Vanderdonckt, J., Michotte, B. Visual Design of
User Interfaces by (De)composition, Em Proc. of 13th Int.
Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS'2006 (Dublin, 26-28 de Julho de
2006), G. Doherty and A. Blandford (eds.), Lecture Notes in
Computer Science, Vol. 4323, Springer-Verlag, Berlin,
2006, pp. 157-170.

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
Florins, M. and Trevisan, D. UsiXML: A User Interface
Description Language for Context-Sensitive User Interfaces.
In Proc. of the AVI’2004 Workshop “Developing User
Interfaces with XML: Advances on User Interface
Description Languages” UIXML’04 (Gallipoli, May 25th
2004). EDM-Luc, 55–62.

[14] Luyten, K., Thys, K., Vermeulen, J., e Coninx, K. A Generic
Approach for Multi-Device User Interface Rendering with
UIML. In 6th International Conference on Computer-Aided
Design of User Interfaces (CADUI'2006), Bucareste,
Romênia.

[15] Mori, G., Paternò, F., Santoro, C. Tool Support for
Designing nomadic Applications. Em Proc. of 7th ACM
Int.Conf. on Intelligent User Interfaces. ACM Press, New
York, 2003, pp. 141-148.

[16] Ocal, K. Etude et développement d'un interpréteur UsiXML
en Java Swing, Haute Ecole Rennequin, Liège, 2004.

[17] One Laptop Per Child (OLPC).
http://www.laptop.org/index.en_US.html

[18] Paternò, F. Model-Based Design and Evaluation of
Interactive Applications, Springer-Verlag, Berlin, 2000.

[19] Paternò, F., Santoro C. One model, many interfaces. In
Proceedings of the Fourth International Conference on
Computer-Aided Design of User Interfaces, pp 143-154.
Kluwer Academics Publishers, 2002.

[20] Puerta, A. and Eisenstein, J. “XIML: A Common
Representation for Interaction Data.” Proceedings of IUI
2002, International Conference on Intelligent User
Interfaces. San Francisco, California, USA. ACM Press.

[21] Simon, R., Wegscheider, F., Tolar, K. Tool-supported single
authoring for device independence and multimodality.
Proceedings of the 7th international conference on Human
computer interaction with mobile devices & services

MobileHCI '05. Salzburg, Austria. Pages: 91 - 98 ISBN:1-
59593-089-2

[22] Souchon, N., Vanderdonckt, J., A Review of XML-Compliant

User Interface Description Languages, Proc. of 10th Int.
Conf. on Design, Specification, and Verification of

Interactive Sys-tems DSV-IS’2003, Lecture Notes in
Computer Science, Vol. 2844, Springer-Verlag, Berlin,
2003, pp. 377-391.

