
��������	�
���	��
�����	�����	����
��
	��
�

��������������������������	���������
��������	��
���
�
�����
�	��������������
�������
����
�	���
���������
��		
������������

����
��
�����	
���
����
���	 �
�	����!�
��
�����������
������"������
�
�	�#$�%&�

'��

��
��(�)
����*�+��,*-./��������,��,0
��
���
������

+-1�*23.45/-.6��/717��/-/.��/-468�,�5�	��
���
�
�����������������
����
�	����
��		
�����	
��89��)�:�
�:�
:�
�

ABSTRACT
A transformational approach for developing multimodal web user
interfaces is presented that progressively moves from a task model
and a domain model to a final user interface. This approach con-
sists of three steps: deriving one or many abstract user interfaces
from a task model and a domain model, deriving one or many
concrete user interfaces from each abstract one, and producing the
code of the corresponding final user interfaces. To ensure these
steps, transformations are encoded as graph transformations per-
formed on the involved models expressed in their graph equiva-
lent. For each step, a graph grammar gathers relevant graph trans-
formations for accomplishing the sub-steps. The final user inter-
face is multimodal as it involves graphical (keyboard, mouse) and
vocal interaction. The approach outlined in the paper is illustrated
throughout a running example for a graphical interface, a vocal in-
terface, and two multimodal interfaces with graphical and vocal
predominances, respectively.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE), Evolutionary pro-
totyping, Structured Programming, User Interfaces. H.5.2 [In-
formation Interfaces and Presentation (e.g., HCI)]: User inter-
faces – Graphical user interfaces, Interaction styles, Input devices
and strategies, Prototyping, Voice I/O.

General Terms
Design, Human Factors, Standardization.

Keywords
Model-Driven Development, Multimodal interaction, Transforma-
tional approach, User Interface eXtensible Markup Language.

1. INTRODUCTION
While the W3C has made much progress in defining the W3C
Multimodal Interaction framework [11] identifying the functional
components of multimodal user interfaces (UIs) and laying down
the groundwork for the coordination and communication between
these components at a browser implementation level, much more
needs to be done further to introduce a method for systematically
developing multimodal UIs based on this framework [16] in a
flexible way. Various methods have been proposed [14]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICMI’05, October 4–6, 2005, Trento, Italy.
Copyright 2005 ACM 1-59593-028-0/05/0010...$5.00.

1. Type A: multimodal and multi-device authoring (e.g., co-
browser authoring) [4].

2. Type B: multimodal and multi-device authoring (e.g., X+V
[19] and SALT (http://www.saltforum.org)).

3. Type C: multimodal and multi-device authoring, where the in-
terface is developed at the level of the data model (e.g., XForms
in XHTML) and the respective presentations for each modality
or device are bound to the data model and manually authored or
automatically generated from the data model [20].

While graphical [19] and vocal user interfaces for the Web [2]
have been largely deployed according to those three types, Multi-
modal Web User Interfaces (MWUIs) remain less researched, in-
vestigated, and deployed [17]. Partly because they involve yet an-
other new markup language that forces developers to (re)deploy
applications according to this language. Also because the specifi-
cations and the design options involved in the development proc-
ess turn to be unidentified, especially when it has to cope with the
selection of what modality for which part of the interaction.
Therefore, motivations for a Type C method for MWUIs include:
the need for a systematic approach for developing such interfaces
in forward engineering, to maintain high level models that have
been used in non-multimodal Type C approaches constant and
consistent for the new possibilities [13], to explore different de-
sign scenarios based on use cases [16], to support user-centered
design by anchoring the approach in task and domain models, to
deploy a wide array of MWUIs with different modalities, different
properties [5] and design options, to accommodate the approach
to various contexts of use. A MWUI is defined with:

• Four modalities are involved: M1 = (keyboard, command lan-
guage), M2 = (mouse, direct manipulation), M3 = (micro-
phone, restricted vocabulary-oriented natural language) and
M4 = (loudspeakers, unrestricted natural language), where an
interaction modality is defined as a couple (device, interaction
language) [5]. The use of modalities could be either sequential
when the modalities are used one after another or parallel
when multiple modalities are used simultaneously (e.g., multi-
ple devices used simultaneously, multiple interaction lan-
guages used simultaneously). A MWUI could be either se-
quential or parallel.

• No fusion/fission is needed: since an independent interpreta-
tion/rendering process for each modality is performed, there is
no need to conduct a fusion of tokens in input to interpret the
multimodal interaction and a fission in output.

• The multimodality type is exclusive: sequential and indepen-
dent interaction channels are operated.

• Only Assignment and Equivalence are supported CARE prop-
erties [5]. Neither Complementarity nor Redundancy are re-
quired because no MWUI language can afford them.

259

The remainder of this paper is structured as follows: Section 2
summarizes related work that attempt to address the same motiva-
tions as explained above for MWUIs. Section 3 outlines the trans-
formational approach that is developed here and their underling
concepts structured in four layers. Section 4 details these three
steps and illustrate them throughout a running example. Section 5
concludes the paper by reporting on the benefits of the approach
with respect to existing state of art.

2. RELATED WORK
A multitude of multimodal interactive systems has already been
developed as off-line applications (e.g., [15, 17]) or on-line appli-
cations for the Web (e.g., [11, 20, 21]). Several separate require-
ments have been identified in these works: usage of models to
produce the multimodal interface (e.g., [2, 6, 18]), description of
these models with a specification language (e.g., CTL [1], UIML
[19], XISL [10]), explicit design options for multimodal dialog
(e.g., for help, CARE properties [5]), task-based design of multi-
modal applications [4]). We are not aware of any work that com-
bines all these requirements into one single systematic approach.
Vida Software’s Natural Interaction platform (http:// www.vida-
software.com) is targeted at interfaces in different isolated modali-
ties restricted to the markup languages, such as WML, HTML,
XHTML, and VoiceXML, but does not integrate them into one
single interface. MONA (Mobile multimOdal Next generation
Applications) [17] involves a presentation server for a wide range
of mobile devices in wireless LAN and mobile phone networks
that transforms a single MWUI specification into a graphical or
multimodal UI and adapts it dynamically for diverse devices (e.g.,
mobile phones and PDAs). However, they do not have any sys-
tematic approach for developing such applications based on mod-
els, particularly the user’s task and a specification language.
EMMA (Extensible Multimodal Annotation markup language -
http://www.w3.org/TR/emma/) is intended for use by systems that
provide semantic interpretations for a variety of inputs, including
but not necessarily limited to, speech, natural language text, GUI
and ink input. This markup will be used primarily as a standard
data interchange format between the components of a multimodal
system; in particular, it will normally be automatically generated
by interpretation components to represent the semantics of users'
inputs, not directly authored by developers. As such, EMMA does
not represent a specification language such as UIML [19] or XISL
[10], and does not contain any transformational approach that ini-
tiates a progressive development from different models.
Teresa [2] separately generates either a graphical UI or a vocal UI
for multiple platforms.

3. OUTLINE OF THE TRANSFORMA-
TIONAL APPROACH
3.1 Reference Framework for Multi-target
UIs
The foundation of the transformational approach for MWUIs that
is presented in this paper is that all the information pertaining to
the models describing the future MWUI is specified in the same
User Interface Description Language (UIDL) throughout the de-
velopment life cycle. This UIDL is UsiXML (User Interface eX-
tensible Markup Language – http://www.usixml.org) and consists
of a UIDL characterized by the following principles:

• Expressiveness of UI: any UI is expressed depending on the
context of use thanks to a suite of models that are analyzable,
editable, and manipulable by a software agent.

• Central storage of models: each model is stored in a model re-
pository where all UI models are expressed similarly.

• Transformational approach: each model stored in the model
repository may be subject to one or many transformations sup-
porting various development steps. Each transformation is it-
self specified thanks to UsiXML [13].

Contrarily to UIML [19] and XISL [10], UsiXML [13] enables
the specification of all models and the transformations between
until a final MWUI is obtained. UsiXML is able to specify vari-
ous UIs with the five modalities of interaction defined in Section
1. For this purpose, UsiXML is structured according to four basic
levels of abstractions defined by the Cameleon reference frame-
work [3] (Fig. 1).

Figure 1. The Cameleon reference framework for multi-target UIs.

At the top level is the Task & Concepts level that describes the
various interactive tasks to be carried out by the end user and the
domain objects that are manipulated by these tasks. These objects
are considered as instances of classes representing the concepts.
An Abstract UI (AUI) provides a UI definition that is independent
of any modality of interaction (e.g., graphical interaction, vocal
interaction, etc.). An Abstract UI is populated by Abstract Con-
tainers (AC), Abstract Individual Components (AIC) and abstract
relationships between. AIC represent basic system interactive
functions, which are referred to as facets (input, output, naviga-
tion, control). In this sense, AICs are an abstraction of widgets
found in graphical toolkits (like windows, buttons) and in vocal
toolkits (like vocal input and output widgets in the vocal inter-
face). Two AUI relationships that can be defined between AICs:
1. Dialog transition: specifies a navigation transition within a ab-

stract container or across several abstract containers.
2. Spatio-temporal relationship: characterizes the physical con-

straints between AICs as they are presented in time and space.

As an AUI does not refer to any particular modality, we do not
know yet how this abstract description will be concretized:
graphical, vocal or multimodal. This is achieved in the next level.

The Concrete UI (CUI) concretizes an AUI for a given context of
use into Concrete Interaction Objects (CIOs) so as to define lay-
out and/or interface navigation of 2D graphical widgets and/or
vocal widgets. Any CUI is composed of CIOs, which realize an
abstraction of widgets sets found in popular graphical and vocal
toolkits (e.g., Java AWT/Swing, HTML 4.0, Flash DRK6, Voice-
XML, and VoxML). A CIO is defined as an entity that users can
perceive and/or manipulate (e.g., push button, text field, check
box, vocal output, vocal input, vocal menu). The CUI abstracts a
Final UI in a definition that is independent of programming tool-
kit peculiarities.

260

Because UsiXML considers both graphical and vocal modalities,
CIOs are further divided into two types: graphicalCIOs and vo-
calCIOs. Each of this type is further divided into Containers and
Individual Components. Graphical containers (GC) (e.g., window,
table, dialog box) contain a collection of graphical individual
components (GIC) (e.g., button, text component, menu), while
vocal containers VC) (e.g., vocalForm, vocalMenu, vocalConfir-
mation) are composed of a collection of vocal individual compo-
nents (VIC) (e.g., vocalFeedback, vocalPrompt, vocalMenuItem,
vocalInput).
The Final UI (FUI) is the operational UI, i.e. any UI running on a
particular computing platform either by interpretation (e.g.
through a Web browser) or by execution (e.g., after the compila-
tion of code in an interactive development environment).
The Context of use describes all the entities that may influence
how the user’s task is carrying out with the future UI. It takes into
account three relevant aspects, each aspect having its own associ-
ated attributes contained in a separate model: user type (e.g., ex-
perience with device and/or system, task motivation), computing
platform type (e.g., desktop, PocketPC, PDA, GSM), and physical
environment type (e.g., lighting level, stress level, noise level).
These attributes initiate transformations that are applicable de-
pending on the current context of use. In order to map different
elements belonging to the models described above, UsiXML pro-
vides the designer with a set of pre-defined relationships called
mappings. These mappings are used throughout the steps of the
transformational approach [12, 14]:

• Manipulates: maps a task onto a domain concept.
• Updates: maps an interaction object and a domain model con-

cept (specifically, an attribute).
• Triggers: maps an interaction object and a domain model con-

cept (specifically an operation).
• Is Executed In: maps a task onto an AUI or CUI element.
• Is Reified By: maps an abstract object into a concrete one

through an abstraction transformation.

3.2 Specification of Transformations
To progressively move for the uppermost level, the “Task & Con-
cept” level, to the bottom level, the “Final UI”, a transformational
approach suggests that each development step can be achieved
through applying a series of transformations. A transformation
applies transformation rules on initial models so as to produce the
resulting models. To specify such transformations, UsiXML is
equipped with an underlying graph structure thanks to which all
models and transformations between can be described to support
model transformation. Therefore, a transformation system is com-
posed by a series of transformation rules, which are in turn ex-
pressed in rules between graph structures (Fig. 2).

Figure 2. Development elements of the transformational approach.

Fig. 3 illustrates how a transformation system applies to any
UsiXML specification: let G be the initial UsiXML specification,
when 1) a Left Hand Side (LHS) matches into G and 2) a Nega-
tive Application Condition (NAC) does not match into G (several
NAC may be associated to a rule), 3) the LHS is replaced by a
Right Hand Side (RHS). G is consequently transformed into G’
(the resultant UsiXML specification). All elements of G that are

not covered by the match are left unchanged. Variables may be
associated to attributes within a LHS. An expression may compare
this variable with a constant or with another variable.

Figure 3. Characterization of transformation in UsiXML.

The transformation approach is sustained by TransformiXML
Enviroment that allows the definition and the application of
transformation rules. This environment is sub-divided into two
components: a Java Application Programming Interface (Trans-
formiXML API) that can be used by any application to apply
transformation rules and a Graphical User Interface that serves as
a front-end application to the API (TransformiXML GUI). Attrib-
uted Graph Grammars (AGG) API (http://tfs.cs.tu-berlin.de/agg/)
performs model-to-model transformations. The basic flow of tasks
with TransformiXML GUI (Fig. 4) is the following: after choos-
ing an input file containing models to transform, the user selects a
development path by choosing a starting point and a destination
point (e.g., the viewpoint to obtain at the end of the process). Here
the starting point is the task and domain model and the destination
is the AUI model. All the steps and sub-steps of the chosen path
can be visualized in a tree. By clicking on a sub-step in the tree, a
set of transformation systems realizing the chosen sub-step are
displayed. Each transformation systems contain a set of rules that
can be visualized in the Transformation rule explorer frame.
The user may also want to edit the rules either in an XML editor
(the one of GrafiXML, for instance) or in AGG environment. The
user may apply the transformation either step by step or as a
whole. The result of the transformation is then explicitly saved in
a UsiXML file.

Figure 4. TransformiXML GUI.

The four levels of the reference framework and the mechanism
supporting the forward engineering from the “Task & Concepts”
level to the “Final UI” level allows defining the four steps of the
transformational approach:

261

1. The task and domain models are specified first so as to initiate
the forward engineering.

2. In order to produce one or many AUIs that are independent of
any modality, TransformiXML applies model-to-model trans-
formations (here, task & domain to AUI) to realize this step.

3. From each AUI, different CUIs can be obtained similarly
thanks to model-to-model transformations (here AUI to CUI).
Each concrete UIs can specify 2D or 3D graphical UI or mul-
timodal UI. Each can be targeted to a particular platform.

4. From each CUI, a corresponding final UI (FUI) can be pro-
duced by automated generation of code from the models. In
order to fulfill this task, the GrafiXML editor is used for
graphical UIs and XSL transformations are used for the vocal
and multimodal UIs. One or many MWUIs are then obtained.
XHTML code can be generated for graphical UIs, VoiceXML
code can be generated for vocal interfaces and XHTML+
Voice (X+V) for multimodal UIs. X+V represents a unified
standard for multimodal interfaces so that applications can be
written once and used in different environments, including
Web pages, telephones and handheld devices.

Figure 5. General development scenario of UI.

4. THE FOUR STEPS OF THE TRANSFOR-
MATIONAL APPROACH
To exemplify the transformational approach, a running example is
selected basically for understanding purposes: an opinion polling
system aiming at collecting opinions of users regarding a certain
subject. The scenario of this example is based on the general de-
velopment scenario described above: from the domain and task
model, an AUI is produced from which many CUIs are derived
(2D graphical UI, vocal UI and multimodal UI). In the last step,
several FUIs are derived from the CUI.

4.1 Step 1: The Task and Domain Models
The task model, the domain model and the mappings between are
graphically described using IdealXML [16], an Interface Devel-
opment Environment for AppLications specified in UsiXML.
The upper part of Fig. 6 depicts a CTT representation [2] of the
task model envisioned for the future system. The root task consists
of participating to an opinion poll. In order to do this, the user has
to provide the system with personal data like name, zip code,
gender, age category. After that, the user iteratively answers
some questions. Answering a question is composed of a system

task showing the title of the question and of an interactive task
consisting in selecting one answer among several proposed ones.
Once the questions are answered, the questionnaire is sent back to
its initiator. The bottom part of Fig. 6 illustrates the domain model
of our UI as produced by a software engineer. The domain model
has the appearance of a class diagram and can be described as fol-
low: a participant participates to a questionnaire, a questionnaire
is made of several questions and a question is attached to a series
of answers. IdealXML generates automatically the UsiXML speci-
fications for the task and domain model edited graphically with
the help of the tool.

Figure 6. Mappings between the task model and the domain model.

The dashed arrows between the two models in Fig. 6 depict the
model mappings, such as manipulates relationships between the
task and the domain model. The sub-tasks of Insert Personal
Data task is mapped onto the correspondent attributes of Partici-
pation class (name, zipCode, gender and ageCategory). Show
Question is mapped onto the attribute title of class Question. The
task Select Answer is mapped onto the attribute title of the class
Answer. Finally, the task Send Questionnaire is mapped onto
the method sendQuestionnaire of the class Questionnaire. Fig. 7
illustrates the mapping model between the task model and the
domain model. Each of the tasks is mapped on the corresponding
attribute or method of the classes contained in the domain model.
IdealXML automatically generates the UsiXML specifications of
the mapping model.

4.2 Step 2: From Task and Domain Models to
AUI Model
The second transformation step involves a transformation system
that contains rules applied in order to realize the transition from
the task and domain model to the abstract model.
Rule 1. Create an AC for task with task children (Fig 8). The
LHS contains two nodes representing two tasks, task (2) being the
decomposition of task (1). The NAC specifies that the decom-
posed task (1) is executed into an AC, while the RHS recreates the
structure of LHS adding an AC in which the decomposed task will
be executed.

262

Figure 7. Mappings for the opinion polling system.

The application of this rule on the task model represented in the
form of a graph G is the following: when the LHS matches into G
and the NAC does not match into G, the LHS is replaced by the
RHS, resulting G’.
 NAC LHS RHS

Figure 8. Create an AC for task with task children.

Rule 2. Create an AIC for each leaf task (Fig 9). The LHS con-
tains a node representing the leaf task (1). The NAC specifies that
the task (1) is executed into an AC, while the RHS creates an AIC
in which the task (1) will be executed. Following the same
mechanism of rule application described for Rule 1, Fig. 9 de-
scribes a rule which creates an abstract individual component
(AIC) for each leaf task found in the task model.
Each AIC can be equipped with facets describing its main pur-
pose/functionality. These facets are derived from the combination
of task model, domain model and the mappings between them.
 NAC LHS RHS

Figure 9. Create an AIC for each leaf task.

Rule 3. Create input facet for AICs executed in creation tasks
(Fig.10). AICs that executes task for which the value of the attrib-
ute userAction is create and the value of task item attribute is
element, are equipped with an input facets of type create attrib-
ute value (create name, create zipCode).
 NAC LHS RHS

Figure 10. Create an input facet for AICs executed in creation tasks.

Depending on the values of attributes user action and task item,
each specific type of task executed into an AIC determines the de-
sign of a corresponding rule in order to provide AIC with facet of
type select (select Gender, select ageCategory, select Answer),
output (output Question) or control (send Questionnaire). The
main objective of UsiXML is to provide a machine processable
language and then a human readable specification. Thus, the AUI
of the virtual polling system is obtained by executing in Trans-
formiXML a set of transformation rules and can be graphically
depicted within the IdealXML (Fig.11). Rule 1 and Rule 2 are il-
lustrated in Fig. 4. Fig. 12 reproduces the UsiXML specification
for the AC Answer question which contains two AIC (Output
Question and Select Answer), each one having its own corre-
sponding facet (Output Question facet and Select Answer facet).

Figure 11. AUI of virtual polling system.

<abstractContainer id="idao2" name="Answer question">
<abstractIndividualComponent id="idao11" name="Output Question">

<output id="idao17" name="Output Question" actionType="abstract" actio-
nItem=”attribute value” />

</abstractIndividualComponent>
<abstractIndividualComponent id="idao12" name="Select Answer">

<input id="idao18" name="Select Answer" actionType=”select” actio-
nitem=”attribute”/>

</abstractIndividualComponent>
</abstractContainer>

Figure 12. UsiXML specification for an AC

Rule 4. Abstract dialog derivation from task model (Fig 13).
For each couple of sister tasks mapped onto AICs, a dialog con-
trol relationship will be established. The dialog control relation-
ship has the same semantic as the temporal relationship. Follow-
ing the same logic, for each combination of AC and AIC, a spe-
cific rule is defined.
 NAC LHS RHS

Figure 13. Abstract dialog derivation from task model.

4.3 Step 3: From AUI Model to CUI Model
The third step implies a transformational system that is composed
of necessary rules for realizing the transition from AUI to CUIs.
Four CUI are taken into account:
1. Total graphical UI i.e., the modality used to interact with the

system is entirely graphical (monomodal UI).
2. Predominant graphical UI i.e., the user fulfills her task with

more graphical interaction than the vocal one (multimodal UI).

263

3. Predominant vocal UI i.e., the vocal modality is present in a
higher proportion then the graphical one (multimodal UI).

4. Total vocal UI i.e., the modality used to interact with the sys-
tem is entirely vocal (monomodal UI).

For each type of CUI a transformation system containing specific
rules is provided. In the following it will be emphasized the
modularity and the extensibility of transformation rules applied in
order to obtain the desired CUIs. The selection of concrete inter-
action components involves a high number of rules due to the
numerous different combinations of facet types, data types, cardi-
nalities, etc.
Rule 5. Create radioButtons and vocalMenuItems for each se-
lection value of a facet (Fig. 14, 15 and 16). The graphical part of
the rule (depicted in red) illustrates respectively the NAC, LHS
and RHS of the rule applied in order to obtain a group of radio
buttons for the total graphical UI. These radio buttons will allow
users to select the gender, age category and their answers to the
questions. The NAC specifies that a selection value (5) is reified
into a GIC. The graphical part of LHS (Figure 15) describes an
AC (1), reified by a GC (2) and containing an AIC (3) named y.
The AIC is composed of a facet (4) of type select, which, at his
turn, is composed of a selection value (5) stored in variable x.
Moreover, the AIC is reified by a GC (6) of type horizontal box
that is contained into GC (2). The graphical part of RHS (Figure
16) recreates the structure of LHS and adds a GIC of type radio
button that reifies the associated selection value (5). The GIC is
contained by GC (6), has the default content of the associated se-
lection value and is added in a group of radio buttons named after
the AIC (3). Considering the initial UsiXML representation in the
form of a graph G, the application of the above described rule is
the following: when the LHS matches into G and the NAC does
not match into G, the LHS is replaced by the RHS, resulting a
transformed graph G’. If the designer wants to provide a multimo-
dal interaction with the system, the rule described above can be
easily extended with new components. In the following, we will
show the modularity and the extensibility of transformation rules
by describing how vocal components (depicted here in blue) are
added to the already existing graphical components, thus creating
multimodal UIs. A new rule is obtained and used to provide a
group of graphical radio buttons and the associated vocal menu
items allowing users to have a graphical output feedback as a re-
sult of a vocal input.

Figure 14. NAC of multimodal individual component rule.

To the already existent graphical NAC (Fig. 14) a VIC that reifies
the selection value (5) is added. The LHS (Figure 15) is extended
with a VC (7) of type vocalMenu that contains a VIC (8) of type
vocalInput. In extension to the already existing structure de-
scribed in Figure 16, VIC of type vocalMenuItem that is the rei-
fication of the selection value (5) is added. The defaultContent of
the vocalMenuItem contains the reified selection value. The map-
pings between nodes and between edges belonging to the three
components of the rule (NAC, LHS, RHS) are specified by at-
tached numbers. The execution of this rule follows the same
mechanism described for previous ones.

Figure 15. LHS of multimodal individual component rule.

Figure 16. RHS of multimodal individual component rule.

In order to obtain a total vocal interaction a simple mechanism
that eliminates the graphical components of the above rule can be
employed. Only the vocal components and their relationship with
the abstract components described in Figures 14, 15 and 16
should be kept.
Fig. 17 shows the UsiXML textual expression of the transforma-
tion rule described above. The graphical components are empha-
sized with a red color while the vocal components are textually
expressed in blue. The mappings between different components
within the NAC, LHS and RHS parts of a rule are realized by us-
ing the ruleSpecificId attribute value of each component as a
source or target of the mapping relationship. The ruleMapping
element realizes the mappings between the LHS and RHS and be-
tween the LHS and NAC.
<transformationRule id="C_MM_RB" name="Creation of multimodal radio buttons">

<nac>
<selectionValue ruleSpecificId="N1"/>
<graphicalIndividualComponent ruleSpecificId="N2"/>
<vocalIndividualComponent ruleSpecificId="N3"/>
<isReifiedBy ruleSpecificId="N4">

<source sourceId="N1"/>
<target targetId="N2"/>

</isReifiedBy>
...

</nac>
<lhs>

<abstractContainer ruleSpecificId="L1">
<abstractIndividualComponent ruleSpecificId="L2" name="y">

 <facet ruleSpecificId="L3" dataType="String" actionType="select">
<selectionValue ruleSpecificId="L4" name="x"/>

</facet>
</abstractIndividualComponent>

</abstractContainer>
<graphicalContainer ruleSpecificId="L5">

<graphicalContainer ruleSpecificId="L6" xsi_type="box" type="horizontal"/>
</graphicalContainer>
<vocalContainer ruleSpecificId="L7" xsi_type="vocalMenu">

<vocalIndividualComponent ruleSpecificId="L8" xsi_type="vocalInput" current-
Value="z"/>

</vocalContainer>
..

</lhs>
<rhs>

<abstractContainer ruleSpecificId="R1">
<abstractIndividualComponent ruleSpecificId="R2" name="y">

<facet ruleSpecificId="R3" dataType="String" actionType="select">
<selectionValue ruleSpecificId="R4" name="x"/>

</facet>
</abstractIndividualComponent>

</abstractContainer>
<graphicalContainer ruleSpecificId="R5">

<graphicalContainer ruleSpecificId="R6" xsi_type="box" type="horizontal">
<graphicalIndividualComponent ruleSpecificId="R7" xsi_type="radioButton" de-
faultContent="x" groupName="y"/>

264

Figure 20. Predominant

vocal UI.

</graphicalContainer>
</graphicalContainer>
<vocalContainer ruleSpecificId="R8" xsi_type="vocalMenu">

<vocalIndividualComponent ruleSpecificId="R9" xsi_type="vocalInput" current-
Value="z"/>
<vocalIndividualComponent ruleSpecificId="R10" xsi_type="vocalMenuItem" de-
faultContent="x"/>

</vocalContainer>
 ..

</rhs>
<ruleMapping sourceId="L1" targetId="R1"/>
..

</transformationRule>
Figure 17. Textual expression of transformation rules.

Rule 6. Create multimodal text component (Figs. 18 and 19).
The rule is applied in order to create concrete interaction compo-
nents of type text component that will allow users to input their
zip code using the vocal modality, while the system’s feedback to
the recognized speech will be graphical. The created structure is
used for the predominant vocal UI. The obtained graphical com-
ponents (Fig.19) are represented in red (a non-editable text com-
ponent representing a label, an editable text component represent-
ing a text field and the GC that contains them) while the vocal
components are represented in blue (a vocal prompt, a vocal input
and the VC of type vocalForm containing them). If the designer
wants to obtain a rule that will allow a monomodal interaction
(graphical or vocal), only the corresponding parts of the rule
should be chosen, the abstract level and the associated mappings
remaining unchanged.

Figure 18. NAC, LHS of rule creating a multimodal text component.

Figure 19. RHS of rule creating a multimodal text component.

The structure of the CUI appearance for the predominant vocal UI
of the Virtual Polling System is illustrated in Fig. 20. The pre-
dominance of UI is given by the interaction modality used to ful-
fill the tasks. Thus, the proportion of vocal modality is higher then
the graphical one. By vocal modality, we understand modality M3
described in the introduction of this paper, while M1 and M2 are
considered graphical modalities. In Provide Personal Data sec-
tion of Fig. 20, graphical modality is assigned only to the create
name task. For the rest of the tasks (create zipCode, create gen-
der and select age) only the vocal modality is assigned to be used
in input. As a result of the speech recognition of the vocal input, a
graphical feedback is provided in the associated GIC. In the de-
sign of the CUI, the use of vocal modality is emphasized by a mi-
crophone, offering a graphical guidance to the user. In the Que-
sionnaire section the vocal modality is represented by the use of
modality M4 in order to provide a vocal output to the user (the
system is uttering the question). The vocal guidance offered to the
user is emphasized here by an icon symbolizing a loudspeaker. In

order to select the answer the vocal
modality is assigned too. Af-
terwards, a vocal confirmation is
provided to the user. The Send
Questionnaire task is fulfilled by
using the graphical modality M2.

4.4 Step 4: From CUI
Model to FUI Model
The last step consists of
transforming each variant of CUI
into their respective FUI. The total
graphical UI is obtained by using
the XHTML generator of
GrafiXML editor. The resultant
XHTML code is further interpreted
by any XHTML browser, obtaining
the FUI in the Fig. 21. The two
multimodal CUIs (predominant

graphic and predominant vocal UIs) and the total vocal UI are
submitted to a XSL Transformation in order to obtain the X+V,
respectively the VoiceXML code. The X+V code is further inter-
preted with NetFront X+V browser, one of the IBM WebSphere
Multimodal Browser, while the VoiceXML code is interpreted
with IBM VoiceXML browser. The resultant multimodal FUI of
the predominant graphical and predominant vocal UI are show in
Figs. 22 and 23. Fig. 24 is a textual representation of total vocal
UI (C = Computer and U = user). The total graphic UI can be ob-
tained not only for the web but also for other targets, such as Vis-
ual Basic (Fig. 25).

Figure 21. Total graphical FUI. Figure 22. Predominant graphical FUI.

5. CONCLUSION
A transformational approach for developing MWUIs has been
presented that relies on a reference framework that decomposes
the UI development life cycle into four levels. The transforma-
tional approach consequently structures the development into four
steps, each step performing a transformation from the previous
level to the next level until a final UI is reached.

265

 Figure 23.Predominant vocal FUI. Figure 24. Total vocal FUI.

Figure 25.Visual Basic representation of total graphic FUI.

All elements, models, and transformations between these levels
have been continuously and uniformly specified thanks to a single
UIDL: UsiXML. Therefore, this transformational approach is su-
perior to existing approaches in that all the design knowledge that
is required to conduct the transformations is explicitly given in
transformation rules. The execution of these rules is ensured by a
transformation engine that is separate from the transformation
logic, as opposed to existing systems where it is implicit. In this
way, the designer may explore many design alternatives and pro-
duce several UIs exhibiting various modalities (up to 4 different)
without restarting the process from the beginning. In addition, all
the resulting UIs are consistent by construction since the trans-
formation engine started from the same task and domain models.
For this purpose, UsiXML [13] has been extended to support the
expression of these rules and modalities. For each modality, a se-
ries of design options exist that allow the designers to change
their design according to the context of use. As future work,
UsiXML will be extended so as to support the use of other mo-
dalities, such as tactile interaction.

6. REFERENCES
[1] Aït-Ameur, Y., Breholée, B., Girard, P., Guittet, L., Jambon, F.:

Formal Verification and Validation of Interactive Systems Specifica-
tions: From Informal Specifications to Formal Validation. In: R. Jac-
quart (ed.), Proc. of 18th IFIP World Computer Congress. Kluwer
Academics Publishers, Dordrecht (2004) 61–76.

[2] Berti, S., Paternò, F.: Model-based Design of Speech Interfaces. In:
Proc. of 10th Int. Conf. on Design, Specification, and Verification of
Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003). LNCS,
Vol. 2844. Springer Verlag, Berlin (2003) 231–244.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
and Vanderdonckt, J.: June 2003, A Unifying Reference Framework

for Multi-Target User Interfaces. Interacting with Computers 15(3)
289–308.

[4] Chen, M., Luo, J., Dong, S.: Task-Oriented Synergistic Multimodal-
ity. In: Proc. of 1st Int. Conf. on Multimodal Interface ICMI'96 (Bei-
jing, October 1996).

[5] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.:
Four Easy Pieces for Assessing the Usability of Multimodal Interac-
tion: the CARE properties. In: Proc. of 5th IFIP TC 13 Int. Conf. on
Human-Computer Interaction Interact’95, 115–120.

[6] Göbel, S., Buchholz, S., Ziegert, T., Schill, A.: Device Independent
Representation of Web-based Dialogs and Contents. In: Proc. of the
IEEE Youth Forum in Computer Science and Engineering YU-
FORIC’01 (Valencia, November 2001). IEEE Computer Press.

[7] Hastie, H., Johnston, M., Ehlen, P.: Context-sensitive Help for Mul-
timodal Dialogue. In: Proc. of the 6th ACM Int. Conf. on Multimodal
Interfaces ICMI’2004. ACM Press, New York (2004) 93–98.

[8] IBM Voice Toolkit for WebSphere Studio. Int. Business Machines
(10 September 2004) http://www-306.ibm.com/software/ perva-
sive/voice_toolkit/.

[9] IBM Multimodal Browser. Int. Business Machines (10 September
2004) http://www-306.ibm.com/software/pervasive/mul timodal/.

[10] Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T.: XISL: A Lan-
guage for Describing Multimodal Interaction Scenarios. In: Proc. of
5th Int. Conf. on Multimodal Interfaces ICMI’2003 (Vancouver, 5-7
November 2003). ACM Press, New York (2003) 281–284.

[11] Larson, J.A., Raman, T.V., Raggett, D.: Multimodal Interaction
Framework, W3C Note. W3 Consortium (6 May 2003), http://www.
w3.org/TR/mmi-framework.

[12] Limbourg, Q., Vanderdonckt, J., Addressing the Mapping Problem
in User Interface Design with UsiXML. In: Ph. Palanque, P. Slavik,
M. Winckler (eds.), Proc. of TAMODIA’2004 (Prague, November 15-
16, 2004). ACM Press, New York (2004) 155–163.

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-
Jaquero, V.: UsiXML: a Language Supporting Multi-Path Develop-
ment of User Interfaces. In: Proc. of EHCI-DSVIS'2004 (Hamburg,
11-13 July 2004). Kluwer Academics, Dordrecht (2005) 207-228.

[14] Limbourg, Q.: Multi-path Development of User Interfaces. Ph.D.
thesis. Université catholique de Louvain, Louvain-la-Neuve (2004).

[15] Maes, S.: Position Statement for Multimodal Workshop. In: Proc. of
W3C Workshop on Multimodal interaction MMI’2004 (Sophia An-
tipolis, 19-20 July 2004). W3C (2004) http://www.w3.org/2004/02/
mmi-workshop/maes-oracle.pdf.

[16] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P.,
Lozano, M.D., Solving the Mapping Problem in User Interface De-
sign by Seamless Integration in IdealXML, Proc. of DSV-IS’2005,
Springer-Verlag, Berlin, 2005, to appear.

[17] Mueller, W., Schaefer, R., Bleul, S.: Interactive Multimodal User In-
terfaces for Mobile Devices. In Proc. of 37th Hawaii Int. Conf. on
System Sciences HICSS’2004 (Big Island, 5-8 January 2004). IEEE
Computer Society Press, Los Alamitos (2004).

[18] Palanque, Ph., Schyn, A., A Model-Based Approach for Engineering
Multimodal Interactive. In: Proc. of 9th IFIP TC13 Int. Conf. on Hu-
man-Computer Interaction INTERACT'2003 (Zurich, 1-5 September
2003). IOS Press, Amsterdam (2003) 543–550.

[19] Simon, R., Jank, M., Wegscheider, F.: A Generic UIML Vocabulary
for Device- and Modality Independent User Interfaces. In: Proc. of
the 13th Int. World Wide Web Conference WWW’13 (New York,
17-22 May 2004). ACM Press, New York (2004).

[20] X+V–Authoring, Deploying and Consuming Multimodal Services.
Versatile Multimodal Solutions (2004) http://www.sys-con.com/
xml/article.cfm?id=615.

[21] Ziegert, T., Lauff, M., Heuser, L.: Device Independent Web Applica-
tions - The Author Once - Display Everywhere Approach. Proc. of
4th Int. Conf. on Web Engineering ICWE’04 (Munich, 28-30 July
2004). Lecture Notes in Computer Science, Vol. 3140. Springer-
Verlag, Berlin (2004) 244–255.

266

