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ABSTRACT 
A transformational approach for developing multimodal web user 
interfaces is presented that progressively moves from a task model 
and a domain model to a final user interface. This approach con-
sists of three steps: deriving one or many abstract user interfaces 
from a task model and a domain model, deriving one or many 
concrete user interfaces from each abstract one, and producing the 
code of the corresponding final user interfaces. To ensure these 
steps, transformations are encoded as graph transformations per-
formed on the involved models expressed in their graph equiva-
lent. For each step, a graph grammar gathers relevant graph trans-
formations for accomplishing the sub-steps. The final user inter-
face is multimodal as it involves graphical (keyboard, mouse) and 
vocal interaction. The approach outlined in the paper is illustrated 
throughout a running example for a graphical interface, a vocal in-
terface, and two multimodal interfaces with graphical and vocal 
predominances, respectively. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Computer-aided software engineering (CASE), Evolutionary pro-
totyping, Structured Programming, User Interfaces. H.5.2 [In-
formation Interfaces and Presentation (e.g., HCI)]: User inter-
faces – Graphical user interfaces, Interaction styles, Input devices 
and strategies, Prototyping, Voice I/O. 

General Terms 
Design, Human Factors, Standardization. 

Keywords 
Model-Driven Development, Multimodal interaction, Transforma-
tional approach, User Interface eXtensible Markup Language. 

1. INTRODUCTION 
While the W3C has made much progress in defining the W3C 
Multimodal Interaction framework [11] identifying the functional 
components of multimodal user interfaces (UIs) and laying down 
the groundwork for the coordination and communication between 
these components at a browser implementation level, much more 
needs to be done further to introduce a method for systematically 
developing multimodal UIs based on this framework [16] in a 
flexible way. Various methods have been proposed [14]: 
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1. Type A: multimodal and multi-device authoring (e.g., co-
browser authoring) [4].  

2. Type B: multimodal and multi-device authoring (e.g., X+V 
[19] and SALT (http://www.saltforum.org)).  

3. Type C: multimodal and multi-device authoring, where the in-
terface is developed at the level of the data model (e.g., XForms 
in XHTML) and the respective presentations for each modality 
or device are bound to the data model and manually authored or 
automatically generated from the data model [20]. 

While graphical [19] and vocal user interfaces for the Web [2] 
have been largely deployed according to those three types, Multi-
modal Web User Interfaces (MWUIs) remain less researched, in-
vestigated, and deployed [17]. Partly because they involve yet an-
other new markup language that forces developers to (re)deploy 
applications according to this language. Also because the specifi-
cations and the design options involved in the development proc-
ess turn to be unidentified, especially when it has to cope with the 
selection of what modality for which part of the interaction. 
Therefore, motivations for a Type C method for MWUIs include: 
the need for a systematic approach for developing such interfaces 
in forward engineering, to maintain high level models that have 
been used in non-multimodal Type C approaches constant and 
consistent for the new possibilities [13], to explore different de-
sign scenarios based on use cases [16], to support user-centered 
design by anchoring the approach in task and domain models, to 
deploy a wide array of MWUIs with different modalities, different 
properties [5] and design options, to accommodate the approach 
to various contexts of use. A MWUI is defined with: 

• Four modalities are involved: M1 = (keyboard, command lan-
guage), M2 = (mouse, direct manipulation), M3 = (micro-
phone, restricted vocabulary-oriented natural language) and 
M4 = (loudspeakers, unrestricted natural language), where an 
interaction modality is defined as a couple (device, interaction 
language) [5]. The use of modalities could be either sequential 
when the modalities are used one after another or parallel 
when multiple modalities are used simultaneously (e.g., multi-
ple devices used simultaneously, multiple interaction lan-
guages used simultaneously). A MWUI could be either se-
quential or parallel. 

• No fusion/fission is needed: since an independent interpreta-
tion/rendering process for each modality is performed, there is 
no need to conduct a fusion of tokens in input to interpret the 
multimodal interaction and a fission in output. 

• The multimodality type is exclusive: sequential and indepen-
dent interaction channels are operated. 

• Only Assignment and Equivalence are supported CARE prop-
erties [5]. Neither Complementarity nor Redundancy are re-
quired because no MWUI language can afford them.  
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The remainder of this paper is structured as follows: Section 2 
summarizes related work that attempt to address the same motiva-
tions as explained above for MWUIs. Section 3 outlines the trans-
formational approach that is developed here and their underling 
concepts structured in four layers. Section 4 details these three 
steps and illustrate them throughout a running example. Section 5 
concludes the paper by reporting on the benefits of the approach 
with respect to existing state of art. 

2. RELATED WORK 
A multitude of multimodal interactive systems has already been 
developed as off-line applications (e.g., [15, 17]) or on-line appli-
cations for the Web (e.g., [11, 20, 21]). Several separate require-
ments have been identified in these works: usage of models to 
produce the multimodal interface (e.g., [2, 6, 18]), description of 
these models with a specification language (e.g., CTL [1], UIML 
[19], XISL [10]), explicit design options for multimodal dialog 
(e.g., for help, CARE properties [5]), task-based design of multi-
modal applications [4]). We are not aware of any work that com-
bines all these requirements into one single systematic approach. 
Vida Software’s Natural Interaction platform (http:// www.vida-
software.com) is targeted at interfaces in different isolated modali-
ties restricted to the markup languages, such as WML, HTML, 
XHTML, and VoiceXML, but does not integrate them into one 
single interface. MONA (Mobile multimOdal Next generation 
Applications) [17] involves a presentation server for a wide range 
of mobile devices in wireless LAN and mobile phone networks 
that transforms a single MWUI specification into a graphical or 
multimodal UI and adapts it dynamically for diverse devices (e.g., 
mobile phones and PDAs). However, they do not have any sys-
tematic approach for developing such applications based on mod-
els, particularly the user’s task and a specification language. 
EMMA (Extensible Multimodal Annotation markup language -
http://www.w3.org/TR/emma/) is intended for use by systems that 
provide semantic interpretations for a variety of inputs, including 
but not necessarily limited to, speech, natural language text, GUI 
and ink input. This markup will be used primarily as a standard 
data interchange format between the components of a multimodal 
system; in particular, it will normally be automatically generated 
by interpretation components to represent the semantics of users' 
inputs, not directly authored by developers. As such, EMMA does 
not represent a specification language such as UIML [19] or XISL 
[10], and does not contain any transformational approach that ini-
tiates a progressive development from different models. 
Teresa [2] separately generates either a graphical UI or a vocal UI 
for multiple platforms. 

3. OUTLINE OF THE TRANSFORMA-
TIONAL APPROACH 
3.1 Reference Framework for Multi-target 
UIs  
The foundation of the transformational approach for MWUIs that 
is presented in this paper is that all the information pertaining to 
the models describing the future MWUI is specified in the same 
User Interface Description Language (UIDL) throughout the de-
velopment life cycle. This UIDL is UsiXML (User Interface eX-
tensible Markup Language – http://www.usixml.org) and consists 
of a UIDL characterized by the following principles: 

• Expressiveness of UI: any UI is expressed depending on the 
context of use thanks to a suite of models that are analyzable, 
editable, and manipulable by a software agent. 

• Central storage of models: each model is stored in a model re-
pository where all UI models are expressed similarly. 

• Transformational approach: each model stored in the model 
repository may be subject to one or many transformations sup-
porting various development steps. Each transformation is it-
self specified thanks to UsiXML [13]. 

Contrarily to UIML [19] and XISL [10], UsiXML [13] enables 
the specification of all models and the transformations between 
until a final MWUI is obtained. UsiXML is able to specify vari-
ous UIs with the five modalities of interaction defined in Section 
1. For this purpose, UsiXML is structured according to four basic 
levels of abstractions defined by the Cameleon reference frame-
work [3] (Fig. 1). 

 
Figure 1. The Cameleon reference framework for multi-target UIs. 

 
At the top level is the Task & Concepts level that describes the 
various interactive tasks to be carried out by the end user and the 
domain objects that are manipulated by these tasks. These objects 
are considered as instances of classes representing the concepts. 
An Abstract UI (AUI) provides a UI definition that is independent 
of any modality of interaction (e.g., graphical interaction, vocal 
interaction, etc.). An Abstract UI is populated by Abstract Con-
tainers (AC), Abstract Individual Components (AIC) and abstract 
relationships between. AIC represent basic system interactive 
functions, which are referred to as facets (input, output, naviga-
tion, control). In this sense, AICs are an abstraction of widgets 
found in graphical toolkits (like windows, buttons) and in vocal 
toolkits (like vocal input and output widgets in the vocal inter-
face). Two AUI relationships that can be defined between AICs:  
1. Dialog transition: specifies a navigation transition within a ab-

stract container or across several abstract containers. 
2. Spatio-temporal relationship: characterizes the physical con-

straints between AICs as they are presented in time and space. 

As an AUI does not refer to any particular modality, we do not 
know yet how this abstract description will be concretized: 
graphical, vocal or multimodal. This is achieved in the next level. 

The Concrete UI (CUI) concretizes an AUI for a given context of 
use into Concrete Interaction Objects (CIOs) so as to define lay-
out and/or interface navigation of 2D graphical widgets and/or 
vocal widgets. Any CUI is composed of CIOs, which realize an 
abstraction of widgets sets found in popular graphical and vocal 
toolkits (e.g., Java AWT/Swing, HTML 4.0, Flash DRK6, Voice-
XML, and VoxML). A CIO is defined as an entity that users can 
perceive and/or manipulate (e.g., push button, text field, check 
box, vocal output, vocal input, vocal menu). The CUI abstracts a 
Final UI in a definition that is independent of programming tool-
kit peculiarities.  
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Because UsiXML considers both graphical and vocal modalities, 
CIOs are further divided into two types: graphicalCIOs and vo-
calCIOs. Each of this type is further divided into Containers and 
Individual Components. Graphical containers (GC) (e.g., window, 
table, dialog box) contain a collection of graphical individual 
components (GIC) (e.g., button, text component, menu), while 
vocal containers VC) (e.g., vocalForm, vocalMenu, vocalConfir-
mation) are composed of a collection of vocal individual compo-
nents (VIC) (e.g., vocalFeedback, vocalPrompt, vocalMenuItem, 
vocalInput). 
The Final UI (FUI) is the operational UI, i.e. any UI running on a 
particular computing platform either by interpretation (e.g. 
through a Web browser) or by execution (e.g., after the compila-
tion of code in an interactive development environment). 
The Context of use describes all the entities that may influence 
how the user’s task is carrying out with the future UI. It takes into 
account three relevant aspects, each aspect having its own associ-
ated attributes contained in a separate model: user type (e.g., ex-
perience with device and/or system, task motivation), computing 
platform type (e.g., desktop, PocketPC, PDA, GSM), and physical 
environment type (e.g., lighting level, stress level, noise level). 
These attributes initiate transformations that are applicable de-
pending on the current context of use. In order to map different 
elements belonging to the models described above, UsiXML pro-
vides the designer with a set of pre-defined relationships called 
mappings. These mappings are used throughout the steps of the 
transformational approach [12, 14]: 

• Manipulates: maps a task onto a domain concept. 
• Updates: maps an interaction object and a domain model con-

cept (specifically, an attribute). 
• Triggers: maps an interaction object and a domain model con-

cept (specifically an operation). 
• Is Executed In: maps a task onto an AUI or CUI element. 
• Is Reified By: maps an abstract object into a concrete one 

through an abstraction transformation. 

3.2 Specification of Transformations 
To progressively move for the uppermost level, the “Task & Con-
cept” level, to the bottom level, the “Final UI”, a transformational 
approach suggests that each development step can be achieved 
through applying a series of transformations. A transformation 
applies transformation rules on initial models so as to produce the 
resulting models. To specify such transformations, UsiXML is 
equipped with an underlying graph structure thanks to which all 
models and transformations between can be described to support 
model transformation. Therefore, a transformation system is com-
posed by a series of transformation rules, which are in turn ex-
pressed in rules between graph structures (Fig. 2). 

 
Figure 2. Development elements of the transformational approach. 

Fig. 3 illustrates how a transformation system applies to any 
UsiXML specification: let G be the initial UsiXML specification, 
when 1) a Left Hand Side (LHS) matches into G and 2) a Nega-
tive Application Condition (NAC) does not match into G (several 
NAC may be associated to a rule), 3) the LHS is replaced by a 
Right Hand Side (RHS). G is consequently transformed into G’ 
(the resultant UsiXML specification). All elements of G that are 

not covered by the match are left unchanged. Variables may be 
associated to attributes within a LHS. An expression may compare 
this variable with a constant or with another variable. 

 
Figure 3. Characterization of transformation in UsiXML. 

 

The transformation approach is sustained by TransformiXML 
Enviroment that allows the definition and the application of 
transformation rules. This environment is sub-divided into two 
components: a Java Application Programming Interface (Trans-
formiXML API) that can be used by any application to apply 
transformation rules and a Graphical User Interface that serves as 
a front-end application to the API (TransformiXML GUI). Attrib-
uted Graph Grammars (AGG) API (http://tfs.cs.tu-berlin.de/agg/) 
performs model-to-model transformations. The basic flow of tasks 
with TransformiXML GUI (Fig. 4) is the following: after choos-
ing an input file containing models to transform, the user  selects a 
development path by choosing a starting point and a destination 
point (e.g., the viewpoint to obtain at the end of the process). Here 
the starting point is the task and domain model and the destination 
is the AUI model. All the steps and sub-steps of the chosen path 
can be visualized in a tree. By clicking on a sub-step in the tree, a 
set of transformation systems realizing the chosen sub-step are 
displayed. Each transformation systems contain a set of rules that 
can be visualized in the Transformation rule explorer frame. 
The user may also want to edit the rules either in an XML editor 
(the one of GrafiXML, for instance) or in AGG environment. The 
user may apply the transformation either step by step or as a 
whole. The result of the transformation is then explicitly saved in 
a UsiXML file. 

 
Figure 4. TransformiXML GUI. 

The four levels of the reference framework and the mechanism 
supporting the forward engineering from the “Task & Concepts” 
level to the “Final UI” level allows defining the four steps of the 
transformational approach:  
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1. The task and domain models are specified first so as to initiate 
the forward engineering. 

2. In order to produce one or many AUIs that are independent of 
any modality, TransformiXML applies model-to-model trans-
formations (here, task & domain to AUI) to realize this step. 

3. From each AUI, different CUIs can be obtained similarly 
thanks to model-to-model transformations (here AUI to CUI). 
Each concrete UIs can specify 2D or 3D graphical UI or mul-
timodal UI. Each can be targeted to a particular platform. 

4. From each CUI, a corresponding final UI (FUI) can be pro-
duced by automated generation of code from the models. In 
order to fulfill this task, the GrafiXML editor is used for 
graphical UIs and XSL transformations are used for the vocal 
and multimodal UIs. One or many MWUIs are then obtained. 
XHTML code can be generated for graphical UIs, VoiceXML 
code can be generated for vocal interfaces and XHTML+ 
Voice (X+V) for multimodal UIs. X+V represents a unified 
standard for multimodal interfaces so that applications can be 
written once and used in different environments, including 
Web pages, telephones and handheld devices. 

 
Figure 5. General development scenario of UI. 

4. THE FOUR STEPS OF THE TRANSFOR-
MATIONAL APPROACH 
To exemplify the transformational approach, a running example is 
selected basically for understanding purposes: an opinion polling 
system aiming at collecting opinions of users regarding a certain 
subject. The scenario of this example is based on the general de-
velopment scenario described above: from the domain and task 
model, an AUI is produced from which many CUIs are derived 
(2D graphical UI, vocal UI and multimodal UI). In the last step, 
several FUIs are derived from the CUI.  

4.1 Step 1: The Task and Domain Models 
The task model, the domain model and the mappings between are 
graphically described using IdealXML [16], an Interface Devel-
opment Environment for AppLications specified in UsiXML. 
The upper part of Fig. 6 depicts a CTT representation [2] of the 
task model envisioned for the future system. The root task consists 
of participating to an opinion poll. In order to do this, the user has 
to provide the system with personal data like name, zip code, 
gender, age category. After that, the user iteratively answers 
some questions. Answering a question is composed of a system 

task showing the title of the question and of an interactive task 
consisting in selecting one answer among several proposed ones. 
Once the questions are answered, the questionnaire is sent back to 
its initiator. The bottom part of Fig. 6 illustrates the domain model 
of our UI as produced by a software engineer. The domain model 
has the appearance of a class diagram and can be described as fol-
low: a participant participates to a questionnaire, a questionnaire 
is made of several questions and a question is attached to a series 
of answers. IdealXML generates automatically the UsiXML speci-
fications for the task and domain model edited graphically with 
the help of the tool.  

 
Figure 6. Mappings between the task model and the domain model. 

The dashed arrows between the two models in Fig. 6 depict the 
model mappings, such as manipulates relationships between the 
task and the domain model. The sub-tasks of Insert Personal 
Data task is mapped onto the correspondent attributes of Partici-
pation class (name, zipCode, gender and ageCategory). Show 
Question is mapped onto the attribute title of class Question. The 
task Select Answer is mapped onto the attribute title of the class 
Answer.  Finally, the task Send Questionnaire is mapped onto 
the method sendQuestionnaire of the class Questionnaire. Fig. 7 
illustrates the mapping model between the task model and the 
domain model. Each of the tasks is mapped on the corresponding 
attribute or method of the classes contained in the domain model. 
IdealXML automatically generates the UsiXML specifications of 
the mapping model. 

4.2 Step 2: From Task and Domain Models to 
AUI Model 
The second transformation step involves a transformation system 
that contains rules applied in order to realize the transition from 
the task and domain model to the abstract model. 
Rule 1. Create an AC for task with task children (Fig 8). The 
LHS contains two nodes representing two tasks, task (2) being the 
decomposition of task (1). The NAC specifies that the decom-
posed task (1) is executed into an AC, while the RHS recreates the 
structure of LHS adding an AC in which the decomposed task will 
be executed. 
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Figure 7. Mappings for the opinion polling system. 

The application of this rule on the task model represented in the 
form of a graph G is the following: when the LHS matches into G 
and the NAC does not match into G, the LHS is replaced by the 
RHS, resulting G’.  
        NAC    LHS                      RHS 

           
Figure 8. Create an AC for task with task children. 

Rule 2. Create an AIC for each leaf task (Fig 9). The LHS con-
tains a node representing the leaf task (1). The NAC specifies that 
the task (1) is executed into an AC, while the RHS creates an AIC 
in which the task (1) will be executed. Following the same 
mechanism of rule application described for Rule 1, Fig. 9 de-
scribes a rule which creates an abstract individual component 
(AIC) for each leaf task found in the task model. 
Each AIC can be equipped with facets describing its main pur-
pose/functionality. These facets are derived from the combination 
of task model, domain model and the mappings between them. 
        NAC          LHS                RHS 

                             
Figure 9. Create an AIC for each leaf task. 

 

Rule 3. Create input facet for AICs executed in creation tasks 
(Fig.10). AICs that executes task for which the value of the attrib-
ute userAction is create and the value of task item attribute is 
element, are equipped with an input facets of type create attrib-
ute value (create name, create zipCode). 
       NAC                        LHS                                RHS 

 
Figure 10. Create an input facet for AICs executed in creation tasks. 

Depending on the values of attributes user  action  and task item, 
each specific type of task executed into an AIC determines the de-
sign of a corresponding rule in order to provide AIC with facet of 
type select (select Gender, select ageCategory, select Answer), 
output (output Question) or control (send Questionnaire). The 
main objective of UsiXML is to provide a machine processable 
language and then a human readable specification. Thus, the AUI 
of the virtual polling system is obtained by executing in Trans-
formiXML a set of transformation rules and can be graphically 
depicted within the IdealXML (Fig.11). Rule 1 and Rule 2 are il-
lustrated in Fig. 4. Fig. 12 reproduces the UsiXML specification 
for the AC Answer question which contains two AIC (Output 
Question and Select Answer), each one having its own corre-
sponding facet (Output Question facet and Select Answer facet).  

 
Figure 11. AUI of virtual polling system. 

 

<abstractContainer id="idao2" name="Answer question"> 
<abstractIndividualComponent id="idao11" name="Output Question"> 

<output id="idao17" name="Output Question" actionType="abstract" actio-
nItem=”attribute value” /> 

</abstractIndividualComponent> 
<abstractIndividualComponent id="idao12" name="Select Answer"> 

<input id="idao18" name="Select Answer" actionType=”select” actio-
nitem=”attribute”/> 

</abstractIndividualComponent> 
</abstractContainer> 

Figure 12. UsiXML specification for an AC 

Rule 4. Abstract dialog derivation from task model (Fig 13). 
For each couple of sister tasks mapped onto AICs, a dialog con-
trol relationship will be established. The dialog control relation-
ship has the same semantic as the temporal relationship. Follow-
ing the same logic, for each combination of AC and AIC, a spe-
cific rule is defined. 
       NAC                           LHS                   RHS 

Figure 13. Abstract dialog derivation from task model. 

4.3 Step 3: From AUI Model to CUI Model 
The third step implies a transformational system that is composed 
of necessary rules for realizing the transition from AUI to CUIs. 
Four CUI are taken into account: 
1. Total graphical UI i.e., the modality used to interact with the 

system is entirely graphical (monomodal UI). 
2. Predominant graphical UI i.e., the user fulfills her task with 

more graphical interaction than the vocal one (multimodal UI). 
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3. Predominant vocal UI i.e., the vocal modality is present in a 
higher proportion then the graphical one (multimodal UI). 

4. Total vocal UI i.e., the modality used to interact with the sys-
tem is entirely vocal (monomodal UI). 

For each type of CUI a transformation system containing specific 
rules is provided. In the following it will be emphasized the 
modularity and the extensibility of transformation rules applied in 
order to obtain the desired CUIs. The selection of concrete inter-
action components involves a high number of rules due to the 
numerous different combinations of facet types, data types, cardi-
nalities, etc.  
Rule 5. Create radioButtons and vocalMenuItems for each se-
lection value of a facet (Fig. 14, 15 and 16). The graphical part of 
the rule (depicted in red) illustrates respectively the NAC, LHS 
and RHS of the rule applied in order to obtain a group of radio 
buttons for the total graphical UI. These radio buttons will allow 
users to select the gender, age category and their answers to the 
questions. The NAC specifies that a selection value (5) is reified 
into a GIC. The graphical part of LHS (Figure 15) describes an 
AC (1), reified by a GC (2) and containing an AIC (3) named y. 
The AIC is composed of a facet (4) of type select, which, at his 
turn, is composed of a selection value (5) stored in variable x. 
Moreover, the AIC is reified by a GC (6) of type horizontal box 
that is contained into GC (2). The graphical part of RHS (Figure 
16) recreates the structure of LHS and adds a GIC of type radio 
button that reifies the associated selection value (5). The GIC is 
contained by GC (6), has the default content of the associated se-
lection value and is added in a group of radio buttons named after 
the AIC (3). Considering the initial UsiXML representation in the 
form of a graph G, the application of the above described rule is 
the following: when the LHS matches into G and the NAC does 
not match into G, the LHS is replaced by the RHS, resulting a 
transformed graph G’. If the designer wants to provide a multimo-
dal interaction with the system, the rule described above can be 
easily extended with new components. In the following, we will 
show the modularity and the extensibility of transformation rules 
by describing how vocal components (depicted here in blue) are 
added to the already existing graphical components, thus creating 
multimodal UIs. A new rule is obtained and used to provide a 
group of graphical radio buttons and the associated vocal menu 
items allowing users to have a graphical output feedback as a re-
sult of a vocal input. 

 
Figure 14. NAC of multimodal individual component rule. 

To the already existent graphical NAC (Fig. 14) a VIC that reifies 
the selection value (5) is added. The LHS (Figure 15) is extended 
with a VC (7) of type vocalMenu that contains a VIC (8) of type 
vocalInput. In extension to the already existing structure de-
scribed in Figure 16, VIC of type vocalMenuItem that is the rei-
fication of the selection value (5) is added. The defaultContent of 
the vocalMenuItem contains the reified selection value. The map-
pings between nodes and between edges belonging to the three 
components of the rule (NAC, LHS, RHS) are specified by at-
tached numbers. The execution of this rule follows the same 
mechanism described for previous ones.  
 

 
Figure 15. LHS of multimodal individual component rule. 

 

 
Figure 16. RHS of multimodal individual component rule. 

In order to obtain a total vocal interaction a simple mechanism 
that eliminates the graphical components of the above rule can be 
employed. Only the vocal components and their relationship with 
the abstract components described in Figures 14, 15 and 16 
should be kept. 
Fig. 17 shows the UsiXML textual expression of the transforma-
tion rule described above. The graphical components are empha-
sized with a red color while the vocal components are textually 
expressed in blue. The mappings between different components 
within the NAC, LHS and RHS parts of a rule are realized by us-
ing the ruleSpecificId attribute value of each component as a 
source or target of the mapping relationship. The ruleMapping 
element realizes the mappings between the LHS and RHS and be-
tween the LHS and NAC. 
<transformationRule id="C_MM_RB" name="Creation of multimodal radio buttons"> 

<nac> 
<selectionValue ruleSpecificId="N1"/> 
<graphicalIndividualComponent ruleSpecificId="N2"/> 
<vocalIndividualComponent ruleSpecificId="N3"/> 
<isReifiedBy ruleSpecificId="N4"> 

<source sourceId="N1"/> 
<target targetId="N2"/> 

</isReifiedBy> 
................................................. 

</nac> 
<lhs> 

<abstractContainer ruleSpecificId="L1"> 
<abstractIndividualComponent ruleSpecificId="L2" name="y"> 

 <facet ruleSpecificId="L3" dataType="String" actionType="select"> 
<selectionValue ruleSpecificId="L4" name="x"/> 

</facet> 
</abstractIndividualComponent> 

</abstractContainer> 
<graphicalContainer ruleSpecificId="L5"> 

<graphicalContainer ruleSpecificId="L6" xsi_type="box" type="horizontal"/> 
</graphicalContainer> 
<vocalContainer ruleSpecificId="L7" xsi_type="vocalMenu"> 

<vocalIndividualComponent ruleSpecificId="L8" xsi_type="vocalInput" current-
Value="z"/> 

</vocalContainer>      
................................................................................ 

</lhs> 
<rhs> 

<abstractContainer ruleSpecificId="R1"> 
<abstractIndividualComponent ruleSpecificId="R2" name="y"> 

<facet ruleSpecificId="R3" dataType="String" actionType="select"> 
<selectionValue ruleSpecificId="R4" name="x"/> 

</facet> 
</abstractIndividualComponent> 

</abstractContainer> 
<graphicalContainer ruleSpecificId="R5"> 

<graphicalContainer ruleSpecificId="R6" xsi_type="box" type="horizontal"> 
<graphicalIndividualComponent ruleSpecificId="R7" xsi_type="radioButton" de-
faultContent="x" groupName="y"/> 
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Figure 20. Predominant 

vocal UI. 

</graphicalContainer> 
</graphicalContainer> 
<vocalContainer ruleSpecificId="R8" xsi_type="vocalMenu"> 

<vocalIndividualComponent ruleSpecificId="R9" xsi_type="vocalInput" current-
Value="z"/> 
<vocalIndividualComponent ruleSpecificId="R10" xsi_type="vocalMenuItem" de-
faultContent="x"/> 

</vocalContainer>   
   ................................................................  

</rhs> 
<ruleMapping sourceId="L1" targetId="R1"/>    
............................................................................ 

</transformationRule> 
Figure 17. Textual expression of transformation rules. 

Rule 6. Create multimodal text component (Figs. 18 and 19). 
The rule is applied in order to create concrete interaction compo-
nents of type text component that will allow users to input their 
zip code using the vocal modality, while the system’s feedback to 
the recognized speech will be graphical. The created structure is 
used for the predominant vocal UI. The obtained graphical com-
ponents (Fig.19) are represented in red (a non-editable text com-
ponent representing a label, an editable text component represent-
ing a text field and the GC that contains them) while the vocal 
components are represented in blue (a vocal prompt, a vocal input 
and the VC of type vocalForm containing them). If the designer 
wants to obtain a rule that will allow a monomodal interaction 
(graphical or vocal), only the corresponding parts of the rule 
should be chosen, the abstract level and the associated mappings 
remaining unchanged.  

 
Figure 18. NAC, LHS of rule creating a multimodal text component. 

 

 
Figure 19. RHS of rule creating a multimodal text component. 

 

The structure of the CUI appearance for the predominant vocal UI 
of the Virtual Polling System is illustrated in Fig. 20. The pre-
dominance of UI is given by the interaction modality used to ful-
fill the tasks. Thus, the proportion of vocal modality is higher then 
the graphical one. By vocal modality, we understand modality M3 
described in the introduction of this paper, while M1 and M2 are 
considered graphical modalities. In Provide Personal Data sec-
tion of Fig. 20, graphical modality is assigned only to the create 
name task. For the rest of the tasks (create zipCode, create gen-
der and select age) only the vocal modality is assigned to be used 
in input. As a result of the speech recognition of the vocal input, a 
graphical feedback is provided in the associated GIC. In the de-
sign of the CUI, the use of vocal modality is emphasized by a mi-
crophone, offering a graphical guidance to the user. In the Que-
sionnaire section the vocal modality is represented by the use of 
modality M4 in order to provide a vocal output to the user (the 
system is uttering the question). The vocal guidance offered to the 
user is emphasized here by an icon symbolizing a loudspeaker. In 

order to select the answer the vocal 
modality is assigned too. Af-
terwards, a vocal confirmation is 
provided to the user. The Send 
Questionnaire task is fulfilled by 
using the graphical modality M2.  

4.4 Step 4: From CUI 
Model to FUI Model 
The last step consists of 
transforming each variant of CUI 
into their respective FUI. The total 
graphical UI is obtained by using 
the XHTML generator of 
GrafiXML editor. The resultant 
XHTML code is further interpreted 
by any XHTML browser, obtaining 
the FUI in the Fig. 21. The two 
multimodal CUIs (predominant 

graphic and predominant vocal UIs) and the total vocal UI are 
submitted to a XSL Transformation in order to obtain the X+V, 
respectively the VoiceXML code. The X+V code is further inter-
preted with NetFront X+V browser, one of the IBM WebSphere 
Multimodal Browser, while the VoiceXML code is interpreted 
with IBM VoiceXML browser. The resultant multimodal FUI of 
the predominant graphical and predominant vocal UI are show in 
Figs. 22 and 23. Fig. 24 is a textual representation of total vocal 
UI (C = Computer and U = user). The total graphic UI can be ob-
tained not only for the web but also for other targets, such as Vis-
ual Basic (Fig. 25).  

 
Figure 21. Total graphical FUI.     Figure 22. Predominant graphical FUI. 
 

5. CONCLUSION 
A transformational approach for developing MWUIs has been 
presented that relies on a reference framework that decomposes 
the UI development life cycle into four levels. The transforma-
tional approach consequently structures the development into four 
steps, each step performing a transformation from the previous 
level to the next level until a final UI is reached.  
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   Figure 23.Predominant vocal FUI.           Figure 24. Total vocal FUI. 
 

 
Figure 25.Visual Basic representation of total graphic FUI.  

 

All elements, models, and transformations between these levels 
have been continuously and uniformly specified thanks to a single 
UIDL: UsiXML. Therefore, this transformational approach is su-
perior to existing approaches in that all the design knowledge that 
is required to conduct the transformations is explicitly given in 
transformation rules. The execution of these rules is ensured by a 
transformation engine that is separate from the transformation 
logic, as opposed to existing systems where it is implicit. In this 
way, the designer may explore many design alternatives and pro-
duce several UIs exhibiting various modalities (up to 4 different) 
without restarting the process from the beginning. In addition, all 
the resulting UIs are consistent by construction since the trans-
formation engine started from the same task and domain models. 
For this purpose, UsiXML [13] has been extended to support the 
expression of these rules and modalities. For each modality, a se-
ries of design options exist that allow the designers to change 
their design according to the context of use. As future work, 
UsiXML will be extended so as to support the use of other mo-
dalities, such as tactile interaction. 
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