
UNIVERSITE CATHOLIQUE DE LOUVAIN
SCHOOL OF MANAGEMENT

BELGIAN LABORATORY OF COMPUTER-HUMAN INTERACTION

A Transformational
Approach for Developing

Multimodal Web User
Interfaces

By Adrian Stanciulescu

A dissertation submitted in fulfillment of the requirements for the

degree of
Certificate of In-depth Studies in Management

Option “Information Systems”

Committee in charge:
Prof. Jean Vanderdonckt, UCL/ESPO/IAG/BCHI, Advisor

Prof. Benoît Macq, UCL/FSA/ELEC/TELE, Examiner
Dr. Yacine Bellik, LIMSI, France, Reader

Academic year 2005-2006

 2

Table of Contents

TABLE OF CONTENTS……………………………………………………………….2

ACKNOWLEDGEMENT……………………………………………………………….5

CHAPTER 1 INTRODUCTION………………………………………………………..6

1.1 Context……………………………………………………………………...6
1.2 Motivation…………………………………………………………………..7
1.3 Terminology………………………………………………………………..8

1.3.1 Mode……………………………………………………………..8
1.3.2 Media..……………………………………………………………8
1.3.3 Modality………………………………………………………….8
1.3.4 Multimodality vs. Multimedia………………………………..9

1.4 Thesis statement…………………………………………………………..9
1.5 Reading map……………………………………………………………...10

CHAPTER 2 STATE OF THE ART IN MULTIMODAL USER INTERFACES….11

2.1 Conceptual frameworks for multimodal systems…….……………11
 2.1.1 TYCOON framework…………………………………………..11
 2.1.2 CARE properties……………………………………………….12
 2.1.3 W3C Multimodal Interaction Framework…………………..14

2.1.4 Comparison of conceptual frameworks…………………...16
2.2 Current monomodal/multimodal languages………………………..16

2.2.1 XISL………………………………………………………………16
 2.2.2 XIML……………………………………………………………...17

2.2.3 UIML……………………………………………………………...18
2.2.4 DISL………………………………………………………………20
2.2.5 VoiceXML………………………………………………………..20
2.2.6 XHTML+Voice (X+V) ………………………………………….21
2.2.7 TeresaXML………………………………………………………23
2.2.8 EMMA…………………………………………………………….24

 2.3 Multimodal user interface development tools……………………...25
 2.3.1 MONA…………………………………………………………….25

2.3.2 SUEDE…………………………………………………………...25
2.3.3 CSLU Toolkit……………………………………………………25
2.3.4 MOST…………………………………………………………….26

 2.4 Conclusions………………………………………………………………26
 2.4.1 Summary of the state of the art…………………………….26
 2.4.2 Requirements…………………………………………………..30

CHAPTER 3 CONCEPTUAL MODELLING OF MULTIMODAL WEB USER
INTERFACES………………………………………………………………………….34

3.1 Selection of the User Interface Description Language……………34
 3.1.1 Task Model……………………………………………………...36

 3

3.1.2 Domain Model………………………………………………….37
 3.1.3 Abstract User Interface Model………………………………38
 3.1.4 Concrete User Interface Model……………………………..41
 3.1.5 Final User Interface……………………………………………42
 3.1.6 Context Model………………………………………………….42
 3.1.7 Mapping Model…………………………………………………43

3.1.8 Transformation Model………………………………………..44
3.2 Semantics…………………………………………………………………45
 3.2.1 Graphical Concrete Interaction Object semantics………45
 3.2.2 Vocal Concrete Interaction Object semantics……………48

3.2.3 Multimodal Concrete Interaction Object semantics…….51
 3.2.4 Concrete User Interface Relationship semantics………..57
3.3 Syntax………..…………………………………………………………….59
 3.3.1 From Semantics to Concrete Syntax………………………59

3.3.2 Concrete Syntax of Interaction Objects…………………...61
3.4 Stylistics…………………………………………………………………..63
3.5 Conclusions………………………………………………………………64

CHAPTER 4 A TRANSFORMATIONAL METHOD FOR PRODUCING
MULTIMODAL WEB USER INTERFACES………………………………………..65
 4.1 Specification of transformation……………………………………….65
 4.2 Design space for web user interfaces……………………………….71
 4.2.1 Design options for graphical web user interfaces………73

4.2.2 Design options for vocal web user interfaces……………76
 4.2.2 Design options for multimodal web user interfaces…….78

4.3 The four steps of the transformational approach………………….79
 4.3.1 Step1: The Task and Domain Models……………………...80

4.3.2 Step 2: From Task and Domain Models to Abstract User
 Interface Model…………………………………………………81
4.3.3 Step 3: From Abstract User Interface Model to Concrete
 User Interface Model………………………………………….88
 4.3.3.1 Selection of modality……………………………….88
 4.3.3.2 Design option for the selected modality………..88
4.3.4 Step 4: From Concrete User Interface Model to Final User
 Interface……………………………………………....99

 4.4 Tool support…………………………………………………………….100
 4.4.1 IdealXML……………………………………………………….101
 4.4.2 TransformiXML……………………………………………….102
 4.4.3 GrafiXML……………………………………………………….105
 4.4.4 CFB (Communication Flow Builder) Generator………...105
 4.4.5 XHTML+Voice Generator……………………………………105

4.4.6 Communication Flow Builder……………………………...105
4.5 Conclusions……………………………………………………………..106

CHAPTER 5 CASE STUDIES……………………………………………………...107
 5.1 Introduction……………………………………………………………..107

 4

5.2 Case study 1: Virtual Polling System……………………………….107
 5.3 Case study 2: Car Rental System……………………………………131
 5.4 Conclusions……………………………………………………………..155

 CHAPTER 6 CONCLUSION……………………………………………………….156
 6.1 Stable knowledge………………………………………………………156
 6.2 Knowledge acquired to be improved and assessed……………..163
 6.3 Remaining knowledge…………………………………………………164

REFERENCES……………………………………………………………………….167

ANNEXES…………………………………………………………………………….175
 ANNEX A……………………………………………………………………..175

ANNEX B……………………………………………………………………..183

 5

Acknowledgement

I would like to express my thanks to:

• My advisor, Professor Jean Vanderdonckt, for his constant support and enthusiasm
regarding my work

• My family and friends

• SIMILAR network of excellence (http://www. similar.cc), the European research

task force creating human-machine interfaces similar to human-human
communication of the European Sixth Framework Programme (FP6-2002-IST1-
507609). This research is fully funded by SIMILAR.

• Didier Magotteaux and Vincent Wauters for the IBM Belgium grant received with

the IBM Multimodal Toolkit™, Software Modeler™, and WebSphere™, with which
this research is conducted.

1. Introduction

 6

Chapter 1 INTRODUCTION

1.1 Context
Today’s graphical user interfaces (GUIs) do not let users communicate in ways that

they naturally do with other human beings [Scot00]. Many end-users have limited literacy
skills, typing skills, or use of their hands. The standard GUI does not work well for these
users or for others in many situations: when users are moving around, using their hands or
eyes for something else, or interacting with another person. To enjoy the benefits of
ubiquitous computing, there is a need of newer, better interface paradigms. Multimodal user
interfaces are one paradigm that can successfully address many of the aforementioned
problems.

On the Internet, people use browsers to visit Web sites, access documents from
networks, and fill out forms. With this growing capability to retrieve information,
communications between users and their devices is receiving more attention. As devices
become smaller, other means of input - in addition to keyboard or tap screen - are becoming
necessary. Small handheld devices, including cell phones and PDA’s, now contain sufficient
processing power to handle multiple tasks. On some devices it is difficult to perform these
tasks using only keyboard, stylus, or handwriting recognition. This has lead to a new
application technology called multimodal, the use of multiple methods of communication
between the user and a device. These methods include keypad, touch or tap screen,
handwriting recognition, speech synthesis and voice recognition.

Multimodal user interfaces [Ovia99] represent a research-level paradigm shift away
from conventional windows-icons-menus-pointers (WIMP) interfaces toward providing
users with great expressive power, naturalness, flexibility and portability. Such flexibility
makes it possible for users to alternate modalities so that physical overexertion is avoided for
any individual modality. It also permits substantial error avoidance and easier error recovery.
The flexibility of a multimodal interface can accommodate a wide range of users, tasks, and
environments - including users who are temporarily or permanently handicapped, usage in
adverse settings (noisy environments, for example) or while mobile, and other cases for
which any given single mode may not suffice. In many of these real-world instances,
integrated multimodal systems have the potential to support entirely new capabilities that
have not been supported at all by previous traditional systems.

Multimodal systems have been viewed as an attractive area for human computer
interaction research since Bolt’s seminal “Put That There” [Bolt80] for positioning objects
on a large screen using speech and pointing. The promise of multimodal interaction has been
and continues to be more natural and efficient human-computer interaction [Cohe98]. The
multimodal design space is growing in popularity due to the increasing accuracy of
perceptual input systems (e.g., voice recognition, handwriting recognition, vision recognition,
etc.) and the increasing ubiquity of heterogeneous computing devices (e.g., cellular
telephones, handheld devices, laptops, and whiteboard computers).

Multimodal applications can be developed successfully in the area of data services,
such as:

• Accessing business information, support desks, order tracking, airline arrival and
departure information, cinema and theater booking services, and home banking
services.

• Accessing public information, including community information such as weather,
traffic conditions, school closures, directions and events; local, national and

1. Introduction

 7

international news; national and international stock market information; and
business and e-commerce transactions.

• Accessing personal information, including calendars, address and telephone lists,
to-do lists, shopping lists, and calorie counters.

Far more people today have access to a computer with an Internet connection.
Multimodal applications offer the promise of allowing everyone to access web based services
from any online mobile device, making it practical to access the web anyplace, anywhere and
anytime, whether at home, on the move, or at work. If the need for multimodal interaction
extends to the network, then the Internet needs new technologies and standards to enable
that functionality. Increasingly, Web developers are seeking ways to turn existing visually
oriented web pages into multimodal ones, as multimodal interaction holds the promise of
more natural dialogs with web-based services.

1.2 Motivation
The development of multimodal web user interfaces considered in the current

dissertation is motivated by the following statements:
• Modality interaction flexibility: multimodal applications give users the flexibility to

choose the interaction modality that is the most suitable for the considered task,
as its achievement depends on: environment (e.g., noisy), context (e.g., driving in
a car), complexity of task (e.g., directory assistance), device capability (e.g., small
displays), preferences and disabilities of the user, (e.g. visually impaired).

• Faster interaction: the parallel input allows users to more quickly access and
respond to information delivered by their devices.

• Lower incidence of errors and easier error recovery: being able to switch between modes
of interaction (using a combination of keyboard, touch screen, stylus, telephone
keys, and voice) decreases the occurrence of errors, because end-users can
choose the mode most suited to different activities.

• True device mobility: the ability of switching between interaction modes (eyes-free,
hands-free, audio-only) allows end-users to take full advantage of their mobile
interaction devices.

• Usability improvement: multimodal UIs improve the usability of data services such
as weather, driving directions, stock quotes, personal information management,
and unified messaging by offering the possibility of developing a wide range of
personalized and differentiated UIs.

• Robust systems: multimodal language is different then the monomodal ones, in the
sense that they are simpler in many aspects, offering the possibility to build more
robust systems [Ovia99]. This is due to the fact that multimodal languages are
syntactically less complex, the fluency is higher, thus allowing a more doubtlessly
debit.

• Enhancement of device effectiveness: as devices continue to get smaller, multimodal
interaction can help increase the effectiveness of the device by combining
multiple input and output modes of communication.

• Improved experience: multimodal applications improve the end-users experience
with mobile devices and encourage the growth and acceptance of multimodal
commerce on the web

1. Introduction

 8

• Lack of multimodal applications: although several real multimodal systems have been
built, their development still remains a difficult task. Applications as well as
development tools dedicated to the design of multimodal user interfaces are
currently few and limited in scope.

1.3 Terminology
The goal of this section is to clarify the signification of the terms used in the field of

multimodal interaction, such as: mode, modality, media and multimodality. The reason of
clarifying this issue is due to the fact that the significations of these concepts have been a
disputed subject as different authors propose different definitions. In the following we will
present the definitions that will be used in the context of this dissertation.

1.3.1 Mode
The communication “mode” [Bell92] corresponds to the motor or sensorial system of

the user. As described in [Schy05], the communication “mode” refers to the communication
channel used by the two entities that interact. According to this point of view two available
input modes corresponding to two motor systems of human beings are identified: the oral
and the gesture modes. Moreover, corresponding to the five human being senses there are
five available output modes: visual, auditive, tactile, olfactive and gustatory modes.

In this dissertation we consider an extended view over the above identified modes
that cover in a more precise way our needs in defining the types of UI interactions. Thus, we
consider four types of input communication modes, based on the implied sensorial system:
graphical, vocal, tactile and gesture. As regarding output we have identified six
communication modes, based on implied sensorial systems as well as on motor system:
graphical, vocal, tactile, olfactory, gustatory and gesture (e.g., an avatar that uses his hands in
order to express himself). A communication mode determines an interaction type between
the user and the system. Thus, each communication mode has an associated interaction type.
For instance, if the communication mode between the user and the system is graphical, the
interaction is said to be graphical.

1.3.2 Media
Most of the authors agree in defining “media” as a technical support for the

information. In [Niga94] “media” is defined as a physical device that allows stocking or
communicating the supported information. Consequently, the definition refers to all input
devices (e.g., mouse, keyboard, microphone, etc.), to all output devices (e.g., screen, loud
speakers, etc) as well as to the devices that allow stocking the information (e.g., CD Rom,
DVD, etc) [Schy05]. As a conclusion, “media” is seen as being more then a “physical device”
even if these two terms are used very often as synonyms.

1.3.3 Modality
Our view over the term “modality” is based on the definition given in [NIGA97a].

The interaction modality is seen as a couple of a physical device d and an interaction
language L : <d, L>. A physical device is an artifact of the system that acquires (input
devices) information (e.g., microphone, keyboard, mouse, etc.) or delivers (output device)
information (e.g., screen, loud speakers). An interaction language defines a set of
conventional symbols that convey meaning (e.g., restricted natural language, direct
manipulation, unrestricted natural language). The symbols are generated by actions applied

1. Introduction

 9

on physical devices. According to the definition given above some examples of modalities
are defined in the following:

• Speech input = (microphone, restricted vocabulary-oriented natural language): as the
employed interaction type is vocal, the modality is said to be vocal

• Written natural language = (keyboard, command language): as the employed
interaction type is graphical, the modality is said to be graphical

• Graphical input = (mouse, direct manipulation): as the employed interaction type
is graphical, the modality is said to be graphical

• Graphical output = (screen, tables): as the employed interaction type is graphical,
the modality is said to be graphical

• Vocal output = (loud speakers, unrestricted natural language): as the employed
interaction type is vocal, the modality is said to be vocal

1.3.4 Multimodality vs. Multimedia

A multimodal system is described in general as a system that supports communication
with the user through different modalities. The term “multi” implies the use of more then
one modality. Multimodality refers to output as well as to input modalities:

• Input multimodal systems are employing at least two different input modalities
• Output multimodal systems are employing at least two different output

modalities.
In this dissertation the definition of multimodality is based on a system-centered view.

Thus, a multimodal system is a system that has the capacity to communicate with a user
through different types of communication modes and to extract and convey meaning
automatically [Niga97c]. But, multimedia systems are also using multiple types of
communication modes. Consequently, a question comes into sight: what is the difference
between a multimodal system and a multimedia system? The answer to this question is given
in [Cout92]. A multimedia system allows the acquisition, the stocking and the distribution of
data, while a multimodal system is capable of acquiring, interpreting data and stocking these
interpretations as well as distributing them. In conclusion, a multimodal system is a system
with multimedia capabilities which offers in the same time the possibility of semantic
treatment of data.

1.4 Thesis statement
The scope of the current thesis is outlined by the following statements:

• We focus on the development of multimodal web user interfaces of
information systems. Multimodal web UIs are user interfaces that give end-
users the flexibility to choose the interaction modality that is the most
suitable for the task at the given moment when manipulating online devices.
With respect to the interaction modality we consider three types of UIs:

 Graphical UI: the modality employed by the user to interact with the
system is entirely graphical (monomodal UI)

 Vocal UI: the modality employed by the user to interact with the
system is entirely vocal (monomodal UI)

 Multimodal UI: the graphical and the vocal modalities are employed
in the interaction between the user and the system.

1. Introduction

 10

• We consider the conceptual and methodological aspects for developing
multimodal web UIs based on a model-to-model transformational approach.

• We introduce in the development life cycle towards a final UI, a design space
that will ease the development process in a structured way in terms of design
options, thus requiring less design effort from the part of designers.

• We target this dissertation to all research organizations that dedicate their
work to the methodological development of user interfaces for information
systems.

1.5 Reading map
This dissertation is structured in 6 chapters as follows:

Chapter 1 consists of an introduction in the multimodal interaction research area,

specifying the motivation of this dissertation and the terminology used in the literature.

 Chapter 2 presents the state of the art in the field of multimodal interaction. First, a
description of 3 conceptual multimodal frameworks and a comparison between them is
provided. Further, the features of a set of 8 monomodal/multimodal languages are
presented. The chapter also identifies the characteristics of a series of representative
multimodal user interface development tools. We conclude with a summary of the state
of the art. Based on this summary we establish a list of requirements defined along with
the corresponding motivations.

 Chapter 3 introduces the concepts of our framework for the development of
multimodal web applications. The user interface description language selected for this
purpose is described along with its extended syntax, semantics and stylistics.

 Chapter 4 presents our transformational method for producing multimodal web
applications. First, the details concerning the specification of transformations are
described. Further, a design space composed of design options for graphical and
multimodal web user interfaces is introduced. Based on these design options the 4 steps
of the transformational approach are detailed. Finally, we present the tool support for
the transformational method.

 Chapter 5 illustrates the transformational approach for the development of
multimodal web user interfaces based on design options for two case studies. The first
one concerns the development of an on-line polling system. The second one concerns
the development of a car rental system.

 Chapter 6 concludes this dissertation by differentiating between the stable knowledge
and the knowledge that was acquired, but has to be improved and assessed. Finally the
future works are proposed.

2. State of the Art

 11

Chapter 2 STATE OF THE ART

Chapter 2 presents the state of the art in the field of multimodal interaction. Section 2.1
provides a description of 3 conceptual multimodal frameworks and a comparison between
them. Section 2.2 presents the features of a set of 8 monomodal/multimodal languages. The
characteristics of a series of representative multimodal user interface development tools are
identified in Section 2.3. Section 2.4 concludes with a summary of the state of the art.

2.1 Conceptual frameworks for multimodal systems

2.1.1 TYCOON framework
Tycoon (Types of COOperatioN) [MART01] is a framework for observing,

evaluating and specifying cooperation among modalities during multimodal human-
computer interaction. In [MART97] a modality is defined as a process which analysis and
produces chunks of information. The TYCOON approach is based on the notions of types
and goals of cooperation between modalities. As a result of a study made in domains such as
Psychology, Artificial Intelligence, Human-Computer Interaction, five basic types of
cooperation between modalities were distinguished:

• Transfer. The transfer cooperation type of several modalities specify that a
chunk of information produced by a modality is used by another modality. The
transfer can appear either between two input modalities, or between two output
modalities, or between an input modality and an output modality. The goals of
transfer cooperation type are:

 Translation: for instance, in hypermedia interfaces a mouse click
provokes the display of an image, or in information retrieval application,
the user may express a request in one modality (e.g., speech) and get
relevant information in other modality (e.g., video)

 Improve recognition (e.g., mouse click detection may be transferred to
speech modality in order to ease the recognition of predictable words
(here, that,…)

 Enable a faster interaction: when a part of a uttered sentences has been
misrecognized, it can be edited using a keyboard so that the user doesn’t
have to type or to utter again the hole sentence.

• Equivalence. The equivalence cooperation type of several modalities means that
a chunk of information may be processed as an alternative, by either of the
modalities. The goals of equivalence cooperation type are:

 Improve recognition command: the user of a graphical editor may specify
a command either through speech or through the selection of a button
with a pen, so as when the speech recognizer is not working accurately
(e.g., because of noise), the user can select the command with the pen

 Adaptation to the user by customization: the user is allowed to select the
modality he prefers

 Faster interaction: because it allows the system or the user to select the
fastest modality.

• Specialization. Modalities that cooperate by specialization precise that a specific
kind of information is always processed by the same modality. The goals of
specialization cooperation type are:

2. State of the Art

 12

 Interpretation: the user is helped to interpret the events produced by the
computer

 Improve recognition: it enables an easier processing and it improves the
accuracy of the speech recognizer since the search space is smaller

 Faster interaction: it decreases the duration of the integration and
modality selection process.

• Redundancy. Several modalities that cooperate by redundancy are processing
the same information (e.g., if the user types “quit” with the keyboard and utters
“quit”, this redundancy can be used by the system to avoid a confirmation dialog,
thus enabling a faster interaction). Two observations have been made:

 Regarding intuitiveness: a case study reveal that sometimes the users
select their options (e.g., the town) both by speech and touch of tactile
screen

 Regarding learnability: a redundant multimodal output involving both
visual display of a text and speech utterance of the same text enables a
faster graphical interface learning.

• Complementarity. Complementarity considers several modalities that are
processing each one different chunks of information which are merged
afterwards. The goals of complementarity cooperation type are:

• Faster interaction: because the two modalities can be used simultaneously
and they convey shorter messages which are also better recognized than
longer messages

• Improve interpretation: for an expert the graphical output is sufficient,
but for novice users a textual output is needed too.

COMIT is a TYCOON framework tool-based that offers to the users a multimodal
interface which allows them to build graphical interfaces. It features several types and goals
of cooperation between speech recognition, a keyboard and a mouse. COMIT is defined by
a language command which is used to specify the cooperation between modalities.

2.1.2 CARE properties

The CARE properties (Complementarity, Assignment, Redundancy and
Equivalence) represent a way of characterizing the relationships that can occur between
different interaction modalities available in multimodal user interfaces. A modality is
described as a couple of a physical device d and an interaction language L: <d, L> (see
Section 1.3.3). In order to give a formal definition of the CARE properties some notions
have been defined in [COUT95]:

• State: is a set of properties that can be measured at a particular time to
characterize a situation.

• Goal: is a state that an agent intends to reach.
• Agent: is an entity capable of initiating the performance of actions (e.g., a user or

a system).
• Modality: is an interaction method that an agent can use to reach a goal.
• Temporal relationship: characterizes the use over time of a set of modalities. The use

of these modalities may occur simultaneously or in sequence within a temporal
window, that is, a time interval.

2. State of the Art

 13

Based on the notions defined above, the following formal definitions of the CARE
properties are specified:

• Equivalence (E). Modalities of set M are equivalent for reaching state s' from
state s, if it is necessary and sufficient to use any one of the modalities. M is
assumed to contain at least two modalities:

Equivalence (s, M, s') ⇔ (Card(M) >1) ∧ (∀m∈M Reach(s, m, s'))

We consider the following:

Modalities:
m1=speech input <microphone, restricted vocabulary-oriented natural language>
m2=written natural language <keyboard, command language>

State s = a multimodal user interface with an unfilled textfield widget
State s’ =a multimodal user interface in which the textfield widget from state s is filled
Example: a text field can be fulfilled by an agent using any of the modalities
m1 or m2.

• Assignment (A). Modality m is assigned in state s to reach s', if no other modality
is used to reach s' from s:

Assignment (s, m, s') ⇔ Reach (s, m, s') ∧ (∀m' ∈M. Reach(s, m', s') ⇒m'=m)

We consider the following:

Modality:
m = written natural language <keyboard, command language>

State s = a multimodal user interface with an unfilled textfield widget
State s’ =a multimodal user interface in which the textfield widget from state s
 is filled.
Example: a text field can be fulfilled by an agent using only the modality m.
No other modality is used to reach state s’.

• Redundancy (R). Modalities of a set M are used redundantly to reach state s'
from state s, if they have the same expressive power (they are equivalent) and if all
of them are used within the same temporal window, tw:

Redundancy (s, M, s', tw) ⇔ Equivalence (s, M, s') ∧ (Sequential (M, tw)∨ Parallel
(M, tw))

We consider the following:
Modalities:

m1= speech input <microphone, restricted vocabulary-oriented natural language>
m2 = graphic input <mouse, direct manipulation>

State s = a multimodal user interface with an unfilled combobox widget
State s’ = a multimodal user interface in which the combobox widget from

 state s is filled.
Example: a combo box can be fulfilled by an agent either by using modalities
m1 and m2 in parallel, either by using them sequentially but in the same
temporal window (i.e., the user must act in a very short time interval so as the
inputs to be treated as if they were parallel).

• Complementarity (C). Modalities of a set M must be used in a complementary
way to reach state s' from state s within a temporal window, if all of them must be

2. State of the Art

 14

used to reach s' from s, (i.e., none of them taken individually cannot cover the
target state):

Complementarity (s, M, s', tw) ⇔ (Card(M) >1) ∧ (Duration(tw) ∞≠) ∧
(∀M' ∈PM (M'≠ M ⇒ ¬REACH (s, M’, s'))) ∧ REACH (s, M, s') ∧
(Sequential (M, tw) ∨ Parallel (M, tw)).

We consider the following:

Modalities:
m1= speech input <microphone, restricted vocabulary-oriented natural language>
m2 = written natural language: <keyboard, command language>

State s = a multimodal user interface with an unfilled textfield widget allowing
 to input the name

State s’ = a multimodal user interface in which the textfield widget from
 state s is filled.

Example: modality m1 is employed by the user to utter the first part of his/her
name, while m2 is used to complete the fulfillment of the task. None of the
modalities taken individually can not be used to reach state s’.

ICARE platform (Interaction CARE – Complementarity, Assignment, Redundancy

and Equivalence) is a component-based approach which allows an easy and rapid design and
development of multimodal user interfaces [BOUC04a]. There are two types of
components: elementary components, which are building blocks used to describe pure
modalities (i.e., device components and interaction language components) and composition
components which describe the combined usage of modalities (i.e., the CARE properties).
The platform enables the designer to graphically manipulate and assemble ICARE
components in order to specify the multimodal interaction dedicated to a given task of the
interactive system. From this specification, the code is automatically generated. Some
multimodal systems were developed using ICARE Platform:

• MEMO PDA: allows users to annotate physical locations with digital notes
which have a physical location and are then read / removed by other mobile
users.

• FACET: is a simulator of Rafale (a French military plane). One prototype
has been realized with ICARE Components for few tasks.

2.1.3 W3C Multimodal Interaction Framework

The purpose of the W3C Multimodal Interaction Framework [Lars03b] is to identify:
• Basic components for multimodal systems
• Markup languages used to describe information required by components (W3C

markup languages)
• Data flowing among components.
The framework describes input and output modes widely used today and can be

extended to include additional modes of user input and output as they become available.
Figure 1-1 illustrates the basic components of the W3C Multimodal Interaction Framework:

• End-user: enters input into the system and observes and hears information
presented by the system.

2. State of the Art

 15

• Input component: contains multiple input modes such as audio, speech,
handwriting and keyboarding. EMMA [W3C04a], may be used to identify the
semantics of data that represent the user’s input.

• Output component: supposes multiple output modes such as speech, text,
graphics, audio files and animation. The output component is supported by the
following languages: SSML (Speech Synthesis Markup Language) used to
describe how the words should be pronounced, XHTML, XHTML Basic or
SVG used to describe how the graphics should be rendered and SMIL which
may be used for coordinated multimedia output.

• Interaction manager: is the logical component that coordinates data and manages
execution flow from various input and output modalities. It maintains the
interaction state and context of the application and responds to inputs from
component interface objects and changes in the system and environment.

• Session component: provides an interface to the interaction manager to support
state management, and temporary and persistent sessions for multimodal
applications.

• System and environment components: enable the interaction manager to find out
about and respond to changes in device capabilities, user preferences and
environmental conditions (e.g., which of the available modes the user wishes to
use, the resolution of the display, does the display supports color or not).

Figure 1-1. W3C Multimodal Interaction Framework

Multimodal interaction requirements for multimodal interaction specifications are

described in [Maes03]. Three levels with an increasing order difficulty for the management of
input interaction are established:

1. Sequential multimodal input: a sequential input is one received on a single modality.
The modality may change over time. Sequential input implies that it must be
possible to specify what modality or device to use for input in sequential
multimodality and hint or enforce modality switches.

2. Simultaneous multimodal input: simultaneous multimodal inputs imply that the
inputs from several modalities are interpreted one after another in the receiving
order, instead of being combined before interpretation.

3. Composite multimodal input: composite input is the input received on multiple
modalities at the same time and treated as a single, integrated compound input by
downstream processes.

2. State of the Art

 16

2.1.4 Comparison of conceptual frameworks
A first difference between the frameworks results from the way they are defining the

notion of modality. While in the TYCOON framework a modality is defined as a process
which analysis and produces chunks of information, in the case of CARE properties a
modality is a couple of a physical device d with an interaction language L : <d, L>. The W3C
Multimodal Interaction Framework defines modality as a type of communication channel
used for interaction. The modality also covers the way an idea is expressed or perceived, or
the manner in which an action is performed (e.g., voice, gesture, handwriting, typing).

Another difference encountered at the conceptual level is the existence of the transfer
type of cooperation in TYCOON framework, concept that is missing in the case of CARE
properties. More then that, due to the fact that in several existing systems sounds are
somehow specialized in notification errors (forbidden commands are signaled with a beep),
in TYCOON a clear distinction of the type of specialization is being made:

• Modality-relative specialization: if sounds are used only to convey
notification errors

• Data-relative specialization: if errors only produce sounds and no graphics
or text

If with CARE properties it can be defined the relationships between [Niga97b]
devices and interaction languages, interaction languages and tasks, or between different
modalities, in TYCOON framework the properties are used in a more restrictive way as they
are describing only various types of cooperation between modalities. Another difference
comes from the point of view of treating the interaction between the system and the user.
With CARE it is possible to define cooperation between different modalities from the
system point of view (system CARE properties) as well as from the user’s point of view (user
CARE properties). The user CARE properties refer to the user’s preferences that affect his/her
choice for input modalities. With TYCOON only the system point of view is considered.

Some similarities can be found between TYCOON and CARE properties on one
side and W3C multimodal interaction requirements, on the other side. The Redundancy
property from TYCOON and CARE frameworks could be expressed by using modalities
sequentially or in parallel, which corresponds respectively to sequential and simultaneous
multimodal input requirements identified by W3C Multimodal Interaction Working Group.
In the same way, the Complementarity property supposes both a sequential or parallel use of
modalities treated as a single which corresponds to sequential and composite multimodal
input requirements, respectively.

2.2 Current (mono/multi)modal languages

2.2.1 XISL
XISL (eXtensible Interaction Sheet Language or eXtensible Interaction Scenario

Language) [Kats03] is a XML language for developing web-based multimodal applications.
The application consists of interaction scenarios between the user and the system. In
principle, a scenario is composed of a sequence of exchanges that contains a set of user’s
multimodal inputs and the system’s actions corresponding to the inputs.

One of the main features of XISL is the separation of the content from the
interaction. The content is held into XML/HTML files while the interaction scenario is
described separately into XISL documents. This creates some advantages of XISL against
other multimodal languages:

2. State of the Art

 17

• System developers can reuse XML/HTML files as well as the XISL files
• Improved readability is offered

Applications developed in XISL allow multiple types of interaction depending on
entity that has the initiative: user initiative, system initiative or even mixed initiative (i.e., the
user and the system apportion their initiative). The language was developed to be supported
by different types of devices like: PCs, mobile phones, PDAs and it offers the possibility of
easily extending them. This flexibility is given by the use of non strict attribute values for
XML elements used to specify the input/output of the user/system. The input/output can
be used cooperatively as follows: parallel input/output, sequential input/output, alternative
input.

The goal of XISL is to provide a common language for web-based multimodal
interaction that satisfies three main features:

• Control dialog flow/transition: this feature is employed from VoiceXML
• Synchronize input/output modalities: this feature is employed from SMIL
• Modality-extensibility: offered by XISL.

Galatea Interaction Builder is a rapid-prototyping tool that supports XISL language
[Kawa03]. It runs on PCs and can handle the following input modalities: speech, direct
manipulation (mouse) and written natural language (keyboard) as well as output modalities
such as: speech (text-to-speech), facial expression and graphic output. The tool provides
graphic user interface design for domain-specific prototyping (Figure 1-2). The interaction
scenario is presented under the form of a state transition diagram. Nodes of the diagram or
multimodal interaction components, which correspond to XISL tags, are connected with
links. The toolbar on the right side of the window provides the components used to specify
the employed modalities (e.g., microphone for speech input, loud speaker for vocal output, a
face symbolizing the output provided by an avatar, etc).

Figure 1-2. The Interaction Builder graphical user interface

2.2.2 XIML
XIML stands for eXtensible Interface Markup Language [Puer02a]. It is a XML-

based language whose main goal is to enable a framework for the definition and interrelation

2. State of the Art

 18

of interaction data. Interaction data refers to the data that defines and relate all relevant
elements of a user interface. From the structure point of view XIML language includes the
following representational units:

• Components: XIML is an organized collection of interface elements that are
categorized in major interface components found in interface models:

 User tasks: defines a hierarchical decomposition of tasks and subtasks,
and the expected flow between those tasks

 Domain objects: is an organized collection of data objects and classes of
objects that is structured into a hierarchy

 User types: categorized in a hierarchy of users
 Presentation elements: is a hierarchy of interaction elements made of

concrete objects which communicate with users
 Dialog elements: structured collection of elements that determine the

interaction actions available to the users
• Relations: definition or statement than links two or more XIML elements inside

of the same component or between different components
• Attributes: features or properties of elements
One of the important uses of XIML can be in the development of user interfaces

that must be displayed in a variety of devices. XIML can be used to effectively display a
single interface definition on any number of target devices. This is made possible by the
strict separation that XIML makes between the definition of a user interface and the
rendering of that interface - the actual display of the interface on a target device. In the
XIML framework, the definition of the interface is the actual XIML specification and the
rendering of the interface is left up to the target device to handle. There are a number of
converters [Puer02b] used to transform a XIML specification to popular target languages
(e.g., HTML, WML). XIML is also supported by a series of tools such as: XIML Validator,
XIML Editor and XIML Viewer.

2.2.3 UIML language
UIML [Abra04] is an XML-based language that provides a device-independent

method to describe a user interface. UIML is also independent of any user interface
metaphor, such as graphical user interface or vocal user interface.

UIML allows describing three aspects: the appearance of the user interface, the user
interaction with the user interface and the connection of the user interface with the
application logic. There are four key concepts that underlie UIML:

1. UIML is a meta-language. UIML defines a small set of powerful tags (e.g.,
tags to describe a part of a UI, tags to describe a property of a UI part) that are
independent of any UI metaphor (e.g., graphical UI, vocal UI), target platform
(e.g., PC, phone), or target language to which UIML will be mapped (e.g., Java,
HTML, VoiceXML). In order to use UIML a toolkit vocabulary must be added.
The vocabulary specifies a set of classes of parts, and properties of the classes.
Different groups of people can define different vocabularies, depending on their
needs. One group might define a vocabulary whose classes have a 1-to-1
correspondence to UI widgets in a particular language (e.g., Java Swing API),
while another group might define a vocabulary whose classes match abstractions
used by a UI designer.

2. UIML separates the elements of a UI. The separation in UIML identifies:

2. State of the Art

 19

 What parts comprise a UI, the presentation style for each part
 The content of each part (e.g., text, sounds, images) and binding of

content to external resources (e.g., XML resources, or method calls in
external objects)

 The behavior of parts when a user interacts with the interface as a set of
rules with conditions and actions

 The connection of the UI with the outside world (e.g., to business logic)
 The definition of the vocabulary of part classes.

3. UIML views the structure of a UI, logically, as a tree of UI parts that
changes over the lifetime of the interface. During the lifetime of a UI the
initial tree of parts may dynamically change shape by adding or deleting parts.
UIML provides elements to describe the initial tree structure (<structure>) and
to dynamically modify the structure (<restructure>).

4. UIML allows UI parts and part-trees to be packaged in templates.
Templates may then be reused in various interface design. This is a missing
feature of other XML languages, such as HTML and WML.

Thanks to its features, UIML is particularly useful for creating multiplatform and
multimodal UIs. To create multiplatform UIs, concept 1 is used to create a vocabulary of
part classes (e.g., defining a class Button) and the concept 2 is used to separately define the
vocabulary by specifying a mapping of the classes to target languages (e.g., mapping UIML
part class Button to class java.awt.Button for Java and to the tag <button> for HTML 4.0).

To create multimodal UIs, a multiplatform UI should be created and then annotate
each part with its mode (e.g., which target platforms uses that part). The behavior section
from concept 2 is then used to keep the interface modalities synchronized. For example, it
might be defined a UIML part class Prompt, the mapping of Prompt parts to VoiceXML and
HTML, and the behavior that synchronizes a VoiceXML and HTML UI to simultaneously
prompt the user for input.

UIML Development Tool (Figure 1-3) allows user interface designers to generate
high fidelity interfaces and production code. The tool is a plug-in for the Eclipse IDE.
UIML is also supported by LiquidUI, a tool that integrates a set of converters for different
software platforms (e.g., Java, HTML, WML, VoiceXML, C++, etc.). The disadvantage of
converters is that if the target language changes from the specification point of view, a
modification of the existing converter should be considered or a new converter has to be
implemented.

2. State of the Art

 20

Figure 1-3. UIML Development Tool

2.2.4 DISL
DISL (Dialog and Interface Specification Language) [Bleu04] is a XML language

defined in the context of the W3C Multimodal Interaction Framework (see Section 2.1.3).
DISL is based on a UIML subset (see Section 2.2.3), which is extended by rule-based

description of state-oriented dialogs for the specification of advanced multimodal interaction
and the corresponding interfaces. Comparing with UIML, DISL contains several modified
or new constructs that increase the flexibility of the language. For example, the use of a
<widget> element with a “generic-widget” attribute instead of a <part> element with a
“class” attribute in order to ensure that the description is generic. Due to this improvement,
DISL becomes suited for the creation of multimodal interfaces. The use of “generic-widget”
attribute provides a classification for the type of object the given <widget> is (e.g.,
command, variable field, text field, etc.). A DISL renderer can then use this classification to
create interface components appropriate to the interaction mode in which a given generic-
widget will operate.

DISL is designed for mobile devices with limited resources. The current
implementation of DISL is made on mobile phones that control the playback of MP3 files
on a PC.

2.2.5 VoiceXML
The scope of VoiceXML [W3C04b] is to provide a standard dialog design language

that could be used by developers to build web-based vocal applications. VoiceXML is a
markup language that supports web-based vocal user interface development and minimizes
client/server interactions by specifying multiple interactions per document. Voice XML is

2. State of the Art

 21

easy to use for simple interactions, and yet provides language features to support complex
dialogs. The language describes the human-machine interaction provided by voice response
system, which includes:

• Output of synthesized speech (text-to-speech)
• Output of audio files
• Recognition of spoken input
• Recognition of DTMF input
• Recording of spoken input
• Telephony features such as call transfer and disconnect

VoiceXML is supported by a series of tools between which IBM WebSphere Voice
Toolkit offers one of the most complete set of features necessary to deploy VoiceXML-
based application. The WebSphere Voice Toolkit is powered by Eclipse technology and
makes it easy to develop VoiceXML applications without having to know the internals of
voice technology. It offers a full-featured voice development environment including:

• Graphical communication flow builder (Figure 1-4)
• VoiceXML development and debugging
• Grammar development and debugging
• Pronunciation builder
• Call Control extensible Markup Language (CCXML) development.

Figure 1-4. IBM WebSphere Voice Toolkit – communication flow builder perspective

2.2.6 XHTML+Voice (X+V)
XHTML+Voice [W3C04b], or X+V for short, is a markup language for developing

multimodal user interfaces for the web. Web developers can create web pages that allow

2. State of the Art

 22

end-users use voice input and output as well as traditional graphical interaction. X+V
achieves this objective by providing a simple way to add voice markup to XHTML.

X+V is based on XHTML, VoiceXML and XML events. For graphical interaction,
X+V uses XHTML standard. For vocal interaction it uses a simplified subset of VoiceXML
standard. For correlating the vocal elements with the graphical ones X+V uses XML events
standard.

X+V specification is interpreted by multimodal web browsers. Graphical elements of
the language specify how a user interface looks like and how it should behave when the user
types, points or clicks. Similarly, vocal elements specify how the multimodal system should
behave when the end-user speaks to it and which are the vocal responses provided by the
system. Each component of a multimodal interface built in X+V, the graphical and the vocal
one, are treated by the multimodal browser using a different engine (i.e., a graphical engine
and a speech engine, respectively)

Multimodal web applications built on X+V can be accessed by voice devices,
browser-based devices and new multimodal devices. Consequently, the user can interact with
the application using a keyboard, a stylus or by voice, depending on the environmental
context (noisy environment or not, possibility of using her hands at a given moment, etc.).
Thus, X+V multimodal applications give users the flexibility to choose the mode of
interaction that is the most suitable for the task at the given moment. This may include the
use of multiple modes of communication to give an enhanced user experience. For example
the user can alternate between speaking and typing in the interface. Regarding the CARE
properties presented in Section 2.1.2, X+V can afford Assignment, Equivalence and Redundancy
properties.

X+V application can be developed and debugged using the IBM Multimodal Toolkit
integrated into IBM Rational Web Developer. For interpreting the X+V application two
multimodal browsers are available: Opera browser and NetFront browser (Figure 1-5).

2. State of the Art

 23

Figure 1-5. NetFront multimodal browser

2.2.7 TeresaXML

 TeresaXML is an XML-based language that addresses the design of multiplatform
user interface [Mori04]. The model-based approach employed by TeresaXML is composed
of a number of steps that allows designers to start with an envisioned task model and then to
derive concrete and final user interfaces for multiple devices (Figure 1-6).

Figure 1-6. Derivation of multiplatform user interfaces from an envisioned task

model

2. State of the Art

 24

In the first phase designers develop a single task model which addresses the possible

context of use and the various platforms involved, including a domain model aiming to
identify all the objects that have to be manipulated to perform tasks and the relations among
such objects.

The next phase (see step 1 in Figure 1-6) consists of developing a system task model
for each different platforms considered. The designers have to filter the task model
according to the target platform, thus obtaining various platform-dependent task models. In
step 2 designers will derive abstract user interfaces for each system task model. The result of
this phase will be an abstract description of the user interface composed of a set of abstract
presentations that are identified through an analysis of the task relations. Each presentation
will be specified by means of abstract interaction objects composed through various
operators (grouping, ordering, hierarchy, relation). The next step produces a concrete user
interface that is completely platform-dependent and has to consider the specific properties
of the target platform. Step 4 represents the code generation phase. The code for the target
environment is generated automatically from the concrete user interface. The design of
multimodal web UIs implies the use of several design options and their associated values.

In order to provide tool support for this approach, XML languages have been
defined for task model, abstract model and concrete model. TeresaXML language is
supported by Teresa tool, a transformation-based environment that addresses the design of
interactive applications at different abstraction levels for various types of platforms (e.g.,
desktop, PDAs, cell phones). The main transformations supported by Teresa are those
described in the above phases. All transformations are hard coded, embedded, and unique.
The final objective of the tool is to produce multimodal (graphical and vocal) user interfaces
through the generation of XHTML+Voice code.

2.2.8 EMMA
EMMA (Extensible MultiModal Addnotation markup language) [W3C04a] is a

markup language used to represent information automatically extracted from the input of
users which manipulate multimodal user interfaces. The language is capable to convey
meaning for different types of input: text, speech, handwriting and combinations of any
previous modalities.

EMMA is considering the following types of input (see Section 2.1.3):
• Single modality input
• Sequential modality input, that is: single-modality inputs presented in sequence
• Simultaneous modality input: imply that the inputs from several modalities are

interpreted one after another in the order that they where received instead of
being combined before interpretation

• Composite modality input: input received on multiple modalities at the same
time and treated as a single, integrated compound input by downstream
processes

The language will be used primarily as a standard data interchange format between
components of a multimodal system. EMMA will be automatically generated by
interpretation components used to represent the semantics (not directly authored by
developers) of the users' inputs. The language does not represent a specification language
and does not contain any transformational approach that initiates a progressive development
from different models.

2. State of the Art

 25

2.3 Multimodal user interface development tools

2.3.1 MONA
MONA (Mobile multimOdal Next generation Applications) [Aneg04] is a

representative example of a complete environment for producing several multimodal web
applications. It involves a presentation server for a wide range of mobile devices in wireless
LAN and mobile phone networks that transforms a single MWUI specification into a
graphical or multimodal UI and adapts it dynamically for diverse devices: WAP-phones,
Symbian-based smart phones or PocketPC and PDAs. The application design process is
based on use cases that allow refining and validating the design of multimodal UI prototypes
for each device. These prototypes are further submitted to a heuristic evaluation performed
by evaluators with design experience.

2.3.2 Suede
Suede is a speech interface prototyping tool that enables rapid, iterative creation of

prompt-response speech interfaces [Anno01]. SUEDE couples a simple prompt/response
card model with the Wizard of Oz technique. There are four types of cards: start card,
prompt card, response card and group card. The Wizard of Oz technique enables
unimplemented technology to be evaluated by using a human to simulate the response of a
system. Wizard of Oz methodologies have a long tradition in the design of speech system
and has the ability to suggest functionality before the implementation of the system. The
Wizard simulates dialog transition as a computer would, reads the system prompts to the
participants and process their response.
 The iterative steps supported in Suede are: design, test and analysis. In design mode,
the speech designer begins to create dialog script examples. After constructing several scrip
examples, the designer starts to construct a design graph that represents a more general
design solution. In the test phase, the designer tries out a design with target users. Because
the wizard recognizes user responses, no speech recognition or speech synthesis is necessary
to test Suede prototypes. During the analysis, designers examine collected test data, deciding
how it should influence the next design iteration in order to obtain a more appropriate flow
of the interface.

2.3.3 CSLU Toolkit
The CSLU Toolkit was created to provide the basic framework and tools for users to

build, investigate and use interactive language systems. These systems incorporate speech
recognition, natural language understanding, speech synthesis and facial animation
technologies. The applications included in CSLU toolkit are developed using Tcl/TK and
the C programming language:

• RAD (Rapid application Developer) is an easy to use graphical authoring tool. It
allows creating structured dialogues between users and the computer and a wide
variety of interactive programs that run both over the telephone and on the
desktop. RAD component allows to drag and drop dialogue states onto a canvas,
connect them together, and configure them to play audio files, create animated
text-to-speech, recognize spoken language, or display images.

• Baldi is an animated, anatomically correct head. It can be used from within
RAD, and in other applications to provide a synchronized visual speech source.

2. State of the Art

 26

It allows the configuration of many aspects of the face and the saving of these
customizes configurations for later use.

• Baldi Sync allows users to record a phrase and then animate Baldi with the
user’s voice.

• Festival is the text-to-speech component of the toolkit.

2.3.4 MOST
MOST (Multimodal Output Specification Platform) [Rous05] is a platform that

allows the design of output multimodal systems, involving graphical, vocal and tactile
modalities. The design is based on a cycle model composed of three steps: analysis,
specification and simulation. After identifying the necessary output interaction components
(i.e., mode, modality and medium) in the analysis step, the specification step formalizes the
results of the previous step based on a series of attributes and criteria assigned to each
specific output interaction component. Further, depending on the current state of the
interaction context, a behavioral model allows the identification of the most suitable output
form that can be used in order to present each interaction component. The behavioral model
is expressed under the form of a set of election rules that produces an adapted multimodal
presentation. The simulation step is sustained by a tool that allows the execution of the
previously determined output specification.

2.4 Conclusions
This section concludes with a summary of the state of the art. We use this summary in order
to establish a list of requirements defined along with the corresponding motivations based
on which we select and extend in Section 3 the user interface description language for the
development of web user interfaces.

 2.4.1 Summary of the state of the art
 The current section offers an overview of the languages surveyed in this chapter.
Table 1-1 sums up in a comparative analysis the following set of features:

• Input modalities: specify the input modalities that can be employed by the end-user
in the interaction with the system. For a better understanding of the involved
interaction modality we specify:

 For graphical modality: the interaction devices (e.g., keyboard, mouse)
 For vocal modality: the type of vocal input (e.g., speech recognition)
 DTMF (Dual Tone Multi-Frequency): is the system used by the touch-

tone telephones that consist in assigning a specific frequency to each key so
that it can easily be identified.

• Output modalities: specify the output modalities employed by the system when
providing the user with information. We specify:

 For graphical modality: the output device (e.g., PC screen, GSM screen)
 For vocal modality: the type of vocal output (e.g., speech synthesis, text-

to-speech)
 Avatar: is an animated face that behaves like humans; it is endowed with

gesture features and is able to make speech conversation with humans.
• Independence of modality: specifies if in the development life cycle there is a

modality-independent level for language specification

2. State of the Art

 27

• Separation of modalities: specifies if the language specifications for the involved
modalities are separated or combined

• Supported CARE properties for input modalities: specify which are the CARE
properties supported by the input modalities

• Supported CARE properties for output modalities: specify which are the CARE
properties supported by the output modalities

• Design options: identifies the existence of design options in the development
process of the UIs

• Model-to-model transformational approach: indicate the existence of a progressive
transformational approach between the models involved in the development
process

• Machine processable vs. Human readable language: specifies which of these two features
have a higher proportion for then language

• Extensibility for new modalities: identifies if the language was intended to be
extensible with new input and output modalities

• Development tools: specifies the name(s) of the development tool(s)
• Interpretation/Rendering/Converter tools: identify the interpretation and rendering

tools. For some languages converters where developed to target already
standardized languages.

2. State of the Art

 28

 Language

Features

XISL XIML UIML + DISL VoiceXML X+V TeresaXML EMMA

Input modalities Graphical
 keyboard
 mouse
 touch screen

Vocal
 speech
recognition

DTMF

Graphical
 keyboard
 mouse

DTMF

Graphical
 keyboard
 mouse

Vocal
 speech

 recognition
DTMF

Vocal
 speech

DTMF

Graphical
 keyboard
 mouse
 stylus pen
 touch screen

Vocal
 speech recognition

Graphical
 keyboard
 mouse
 stylus pen
 touch screen

Vocal
 speech
recognition

DTMF

Graphical
 keyboard
 mouse

Vocal
 speech
recognition

Output
modalities

Graphical
 PC screen
 PDA screen

Vocal
 speech
synthesis
 text-to-speech
 audio

Avatar

Graphical
 PC screen
 GSM screen

Graphical
 PC screen
 GSM screen

Vocal
 speech
synthesis
 text-to-
speech
 audio

Vocal
 speech
synthesis
 text-to-
speech
 audio

Graphical
 PC screen
 handheld devices
screen

Vocal
 speech synthesis
 text-to-speech
 audio

Graphical
 PC screen
 handheld

 devices screen
Vocal

 speech
synthesis
 text-to-speech
 audio

-

Independence
of modality No - Yes - No Yes -

Separation of
modalities No - Yes - Yes Yes -

Supported
CARE
properties for
input

A, E - A, E - A, E, R A, E, R -

Supported
CARE
properties for
output

A, E, R - A, E, R - A, E, R A, E, R -

2. State of the Art

 29

Design options No No No No No Yes No
Model-to-model
transformational
approach

No Yes No No No Yes No

Machine
processable

vs.
Human readable

Machine
processable

Machine
processable

Machine
processable

Machine
processable

Machine
processable

Machine
processable

Machine
processable

Extensibility for
new modalities Yes No Yes No No Yes Yes

Development
tool

Galatea Interaction
Builder

XIML Validator,
Editor, Viewer

tools

UIML
development tool

IBM
WebSphere

Voice Toolkit

IBM Multimodal
Toolkit Teresa No

Interpretation/
Renderer/Conv
erter tools

Internet Explorer 6
with multimodal
software support

components,
Anthropomorphic

spoken dialog agent
toolkit

Converters to
HTML, WML

LiquidUI
(converter for
HTML, WML,

VoiceXML, Java,
etc.)

IBM
VoiceXML

browser

Net Front browser,
Opera browser

Teresa (generation
of X+V

specification)
No

Table 1-1. Comparison of monomodal /multimodal languages

2. State of the Art

 30

2.4.2 Requirements
When developing user interfaces in general, there are usually 2 approaches taken into

account:
A. Rush-to-code approach: is the traditional method adopted by a great number of
developers which have the tendency of jumping directly into the generation of the code for
their applications without taking into consideration the problems generated by this
approach. Some of them are identified below:

 Completeness: the application will offer to the users a more reduced set of
functionalities then expected

 Consistency: when is ensured it leads to ease of learning, ease of use and
improves the user's productivity by leading to higher results and fewer errors
because the user can predict what the system will do in any given situation
[Niel88].

 Correctness: the results of the users demands are not the correct ones
 Errors:

 Coding: without a good design of the application, coding errors are
unavoidable

 Debugging: the errors are difficult to identify and the recovery from
them is hard to achieve a they can be generated either by an incorrect
coding or by an inappropriate design of the application due to the rush to
code approach

 Usability: the user will manipulate an application with a reduce ease of
use

 Developing time cost: the sooner is the rush to the code writing, the more time
will be spend to develop the application.

The development of Multimodal web user interfaces are submitted to the same type
of problems as those summarized above when following the rush-to-code approach. Based
on them we define in Table 1-2 a series of criteria according to which we analize the limits of
the approach and we localize the impact of each criterion over the designer, programmer or
end-user. The estimated time for the development and further modifications (e.g., adding an
attribute) considers a reasonably complex task. As it can be observed the end-user is the one
that is the most affected by the application of the rush-to-code approach.

Criterion Rush-to-code approach Level of impact
Completeness No guarantee End-user
Consistency No guarentee End-user
Correctness No guarantee End-user
Guidance No End-user

Coding errors Yes Programmer
Debugging errors Yes Programmer
Usability errors Yes End-user

Estimated time for a first
development

Novice user (5 days)
Expert user (2 days)

Designer

Estimated time for further
modifications

Novice user (1/2 day)
Expert user (a coulpe of hours)

Designer

Table 1-2. The Rush-to-code approach

2. State of the Art

 31

B. Model-based approached: consideres a methodology based on models that are
employed in the different development steps and offers guidance for coding complet and
correct multimodal web applications. The mehodology (as defined in Section 1.4) is
delineated by a set of requirements that are elicited and motivated by the state of the art
presented in Section 2.2. We have grouped them in a decreasing order of importance in: (1)
multimodality requirements and (2) ontological and methodological requirements. Each of
them is defined along with its corresponding motivation(s):

Multimodality requirements

Requirement 1. Support for multimodal input: states that our ontology should allow
multiple (i.e., at least two different) input interaction modalities. The current requirement is
motivated by the definition of the multimodal systems (see Section 1.3.4).

Requirement 2. Support for multimodal output: states that our ontology should allow
multiple (i.e., at least two different) output interaction modalities. The requirement is
motivated by the definition of the multimodal systems (see Section 1.3.4).

Requirement 3. CARE properties support for input modalities: states that our ontology
should ensure the support of the CARE properties for input modalities. This requirement is
motivated by the design facilities offered by the CARE properties when defining the
relationships that can occur between input modalities.

Requirement 4. CARE properties support for output modalities: states that our
ontology should ensure the support of the CARE properties for output modalities. The
current requirement is motivated by the design facilities offered by the CARE properties
when defining the relationships that can occur between output modalities.

Requirement 5. Approach based on design space: states that our development life cycle
towards a final multimodal web user interface should be supported by a set of design
features. This requirement is motivated by the need to clarify the development process in a
structured way in terms of options, thus requiring less design effort.

Requirement 6. Openness to new modalities: state that the conceptual structure and the
transformations applied on it should allow the extension with new types of interaction
modalities. This requirement is motivated by the constant appearance of new computing
platforms, each of them coming with a new set of supported interaction modalities. This
requirement is a principle that we would like to cover, but we are well aware of the fact that
very complex interactions can not be supported.

Requirement 7. Separation of modalities: states that the concepts and the specifications
corresponding to each modality should be syntactically separated one from each other. The
current requirement is motivated by two aspects: (1) the flexibility in developing applications
due to the fact that the specifications for each modality can be developed separately from the
other modalities specifications and combined them altogether later, (2) reusability of the
specification or part of a specification of a modality in other applications that involve the use
of the same modality.

2. State of the Art

 32

Ontological and methodological requirements

Requirement 8. Ontological independence of modality: states that the provided
ontology should ensure a level in the development life cycle that allows specifying a
modality-independent UI. This requirement is motivated by the growing number of new
interaction devices and, consequently, of interaction modalities that will determine the
development of new UIs with new modality capabilities. A modality-independent level will
also allow avoiding the redeployment of UIs from scratch. This requirement contributes to
the principle of separation of concerns defined in [Dijk76].

Requirement 9. Transformation-based development: states that the development of
user interface systems should be based on a successive application of transformations to an
initial representation. The current requirement is motivated by the variety of contexts of use
(i.e., referred as the triple <user, computing platform, physical environment>) for which a
UI is designed [Limb04b]. This variety stresses the need for abstractions from which it is
possible to obtain context specific representations by progressive refinements. The
advantage of such representations is given by the ability to reason on one single model and
obtain many different UIs.

Requirement 10. Machine processable: states that the provided ontology should be
proposed in a format that can be legible by a machine. This requirement is motivated by
necessity of transposing the ontological concepts into representations that can be processed
by machines.

Requirement 11. Human readable: states that the proposed ontology should be legible by
human agents. The current requirement is motivated by two aspects: (1) the need of defining
in an explicit manner the ontological concepts in order to ensure their precise
comprehension, (2) the necessity of sharing the underlying concepts among the research
community.

Requirement 12. Ontological homogeneity: states that the ontological concepts should
be defined according to a common syntax. The requirement is motivated by the necessity of
defining a single formalism for model concepts in order to facilitate their integration and
processing.

Requirement 13. Reuse of specification: refers to the possibility of reusing hole or part of
a specification for another system. The current requirement is motivated by the general
principle in software engineering.

Requirement 14. Methodological explicitness: states that the component steps of our
methodology should define in a comprehensive way their logic and application. This
requirement is motivated by the lack of explicitness of the existing approaches in describing
the proposed transformational process.

Requirement 15. Methodological extendibility: refers to the ability left to the designers
to extend the development steps proposed in a methodology. The current requirement is
motivated by the lack of flexibility in the current methodological steps that hinder designers
to add, delete, modify and reuse these steps.

2. State of the Art

 33

Requirement 16. Support for tool interoperability: refers to the possibility of reusing the
output provided by one tool into another tool. This requirement is motivated by the lack of
explicitness of transformations due to their heterogeneous formats that prevents the reuse of
transformations outside the context for which they were designed.

3. Conceptual Modelling of Multimodal Web User Interfaces

 34

CHAPTER 3 CONCEPTUAL MODELLING OF MULTIMODAL WEB USER
INTERFACES

After identifying the requirements of multimodal web applications in Chapter 2, the current
chapter introduces the concepts of our framework extended for the development of
multimodal web applications. Section 3.2 presents the selection of the user interface
description language. Sections 3.3, 3.4 and 3.5 describe the semantics, the syntax and the
stylistics of the selected language, respectively.

3.1 Selection of the User Interface Description Language
The central goal of the current dissertation is to provide a model-driven approach

that can be employed in order to offer designers the capability of developing multimodal
web UIs. In software engineering, model-driven approaches rely in the power of models to
construct and reason about software systems. The goal of the model-driven approach for
user interface development is to propose a set of abstractions, development processes and
tools that enable an engineering approach for the development of UIs. In order to support
the main goal of the present dissertation a user interface description language is desirable.
With respect to this goal we have considered two choices: (1) introducing a new specification
language (2) reusing or expanding an already existing user interface description language.
Starting from scratch with a specification language requires a lot of efforts before reaching a
level of interest that is significant. Thus, the first option appears to be resource-consuming.
With respect to the second option we have considered several multimodal languages for
which a set of shortcoming have been identified:

• X+V:
 Is an implementation language and not a User Interface Description Language.

As such, X+V will be used in the current dissertation as a target language and
not as a specification language.

 There is no modality-independent level (Requirement 8. Ontological
independence of modality)

 There are no design options in the development life cycle (Requirement 3.
Approach based on design space)

• XISL:
 There is no modality-independent level (Requirement 8. Ontological

independence of modality)
 The specification language does not specify the interaction modalities separately

(Requirement 7. Separation of modalities)
 There are no design options in the development life cycle (Requirement 3.

Approach based on design space)
• TeresaXML:

 Is based on a design space approach but it is limited in terms of alternatives of
design options

 The tool is based on a transformational approach (Requirement 9.
Transformation-based development), but the transformations are precomputed
and hard-coded. Thus, modifiability and extendibility are not supported
(Requirement 15. Methodological exendibility).

3. Conceptual Modelling of Multimodal Web User Interfaces

 35

 As the transformations are hard-coded, they are not expressed in the same
language as the specification language (Requirement 13. Ontological
homogeneity).

To the above identified shortcomings we add a general one: if we want to submit an
extension of an existing language there is no guarantee that the Consortium which is in
charge with that language will consider this extension.

After identifying the shortcomings for the above multimodal languages we also
considered UsiXML (USer Interface eXtensible Markup Language) (www.usixml.org), a User
Interface Description Language that allows the specification of various types of UIs such as
Graphical User Interfaces (GUIs), Vocal User Intefaces (VUIs) and 3D User Interfaces (3D
UIs). For the main goal of this dissertation we have selected UsiXML due to the following
motivations:

• UsiXML is structured according to the four basic levels of abstraction (Figure 3-
1) defined by the Cameleon reference framework identified in [Calv03]. This
framework is a reference for classifying UIs supporting multiple target platforms
or multiple contexts of use in the field of context-aware computing and
structures the development life cycle into four levels of abstraction: task and
concepts, abstract user interface, concrete user interface and final user interface.
The identification of the four levels and their hierarchical organization is built on
their independence with respect to the context in which the final software system
is used. Thus, the Task and Concepts levels is computation independent, the
Abstract UI level is modality independent and the Concrete UI level is toolkit
independent.

Figure 3-1. The Cameleon reference framework for multi-target UIs

• UsiXML relies on a transformational approach that progressively moves from

the Task and Concept level to the Final User Interface (Requirement 9.
Transformation-based development).

• The steps of the transformational approach define in a comprehensive way their
logic and application [Limb04] (Requirement 14. Methodological explicitness).

• The transformational methodology of UsiXML allows the introduction of new
development sub-steps, thus ensuring the possibility to explore alternatives for
each sub-step and to add new ones (Requirement 15. Methodological
extendibility).

• UsiXML has an underlying unique formalism represented under the form of a
graph-based syntax. (Requirement 12. Ontological homogeneity).

3. Conceptual Modelling of Multimodal Web User Interfaces

 36

• UsiXML allows reusing elements previously described in anterior UIs to
compose a UI in new applications. This facility is provided by the underlying
XML syntax of UsiXML which allows the exchange of any specification.
Moreover, the ability of transforming these specifications with a set of
transformation rules increases the possibilities for reusing them (Requirement 13.
Reuse of specification).

• The progressive development of UsiXML levels is based on a transformational
approach represented under the form of a graph-based graphical syntax. This
syntax proved to be efficient for specifying transformation rules and an
appropriate formalism for human use (Requirement 11. Human readable).

• UsiXML supports modality independence as UIs can be described at the
Abstract UI level in a way that remains independent of any interaction modality
such as graphical interaction, vocal interaction or 3D interaction (Requirement 8.
Ontological independence of modalities).

• UsiXML supports the incorporation of new interaction modalities thanks to the
modularity of the framework where each model is defined independently of the
others and to the structured character of the models ensured by the underlying
graph formalism (Requirement 6. Openness to new modalities).

• UsiXML is supported by a collection of tools that allow processing its format
(Requirement 10. Machine processable).

• UsiXML allows cross-toolkit development of interactive application thanks to its
common UI description format (Requirement 16. Support for toolkit
interoperability).

In the following sections we present the UsiXML models and their corresponding
underlying concepts, for which UML class diagrams are used. The description is based on
[USIX06] and emphasizes the improvements and expansions realized in order to adapt the
UsiXML models to the requirements of multimodal web UIs.

 3.1.1 Task Model

The Task Model describes the interactive tasks as viewed by the end user interacting
with the system. The task model is expressed here according to our extended version of
ConcurTaskTree notation [Pate97]. The Task Model (Figure 3-2) is composed of tasks and
task relationships. Tasks are, notably, described with attributes like name and type. The name of
the task is generally expressed as a combination of a verb and a substantive (e.g., consult
patient file). The type refers to four basic types of tasks: user's, interactive, system and
abstract task. For leaf task we consider two attributes (i.e., userAction and taskItem) that enable
a refined expression of the nature of the task. This expression is based on the taxonomy
introduced by [Cons03] that allows to qualify a UI in terms of abstract actions it supports.
The userAction is represented by a verb that indicates a user action required to perform the
task and the taskItem which refers to a type object or subject of an action. The possible
values and their associated definition are presented in Section 3.1.2.

Task relationships are relationships involving several occurrences of different (or the
same in some cases) tasks. Task relationships are of two main types:

• Decomposition: enables to represent a hierarchical structure of the task tree.
Decomposition relationship is implicit within the XML syntax of the language
and it is represented by simple embedding of elements.

3. Conceptual Modelling of Multimodal Web User Interfaces

 37

• Temporal: allows specifying temporal relationships between tasks. We use LOTOS
operators as they have been applied to task modeling in [Pate97].

Figure 3-2. Meta-model of the Task Model

3.1.2 Domain Model

The Domain Model (Figure 3-3) is a description of the classes of objects manipulated
by a user while interacting with a system. It consists of one or many domainClasses, and
potentially one or many domainRelationships between these classes.

A class describes the characteristics of a set of objects sharing a set of common
properties. The concepts identified at the level of a class are the following: attributes, methods,
and objects. An attribute is a particular characteristic of a class. Attributes are further described
by the elements constituting the attribute class. The attributeDataType refers to basic data
types as string, integer, real, boolean or enumerated. An enumeratedValue describes in
extension an attribute that has the characteristic of being enumerated. The attributeCardMin
and attributeCardMax describes, respectively, the lower and upper bound of the attribute
cardinality (0 means that the attribute is not mandatory, 1 means that it is mandatory). A
method is the description of a process able to change the system's state. Here, the methods are
described by its signature (i.e., its name, input and output parameter(s)). An object is an
instance of a class and is composed of attribute instances and can call methods.

A domainRelationship describes various types of relationships between classes. They
can be classified in three types: generalization, aggregation, ad hoc. Class relationships are
described with several attributes that enable to specify its role names and cardinalities.

3. Conceptual Modelling of Multimodal Web User Interfaces

 38

Figure 3-3. Meta-model of the Domain Model

 3.1.3 Abstract User Interface Model

Abstract User Interface (AUI) Model is a model that represents a canonical expression of
the renderings and manipulations of the domain concepts and functions in a way that is
independent of any interaction modality and computing platform. As an AUI does not refer
to any particular modality, we do not know yet how this abstract description will be
concretized: graphical, vocal or multimodal. This is achieved in the next level.

AUI Model (Figure 3-4) is populated by Abstract Interaction Objects (AIO) and Abstract
User Interface Relationships between them.

Figure 3-4. Meta-model of the AUI Model

3. Conceptual Modelling of Multimodal Web User Interfaces

 39

An AIO is an element populating an AUI model consisting in an abstraction of

widgets found in graphical toolkits (e.g., windows, buttons) and vocal toolkits (e.g., prompts,
vocal menus). It can be of two types: Abstract Individual Component (AIC) or Abstract Container
(AC).
 An AIC is any individual element populating an AC. An AIC assumes at least one
basic system interaction function described as facet in the UI. As AICs are composed of
multiple facets, we call them multi-faceted. Each facet describes a particular function an
AIC may assume. We identify four main facets:

1. Input facet: describes the type of input that may be accepted by an AIC
2. Output facet: describes what data may be presented to the user by an AIC
3. Navigation facet: describes the possible container transition a particular AIC may

enable
4. Control facet: describes possible methods from the Domain Model that may be

triggered from a particular widget.
An AIC may assume several facets simultaneously. For instance an AIC may display an

output while accepting an input from a user, trigger a container transition and a method
defined in the Domain Model.

The actionType attribute of a facet enables the specification of the type of action an AIC
allows to perform. The possible values (Table 3-1) are the same as for the userAction attribute
of a task from the Task Model. The view value allows in [USIX05] to express an information
by displaying it and can be reified in the Concrete level only by a graphical object. In order
to keep the AUI Model independent of any modality, we replace this value by introducing in
[USIX06] convey, a more appropriate value for actionType attribute, as it does not specify the
employed modality.

actionType Definition
start/go Specifies that the AIC triggers an action
stop/exit Specifies that the AIC puts an end to an action
select Specifies that the AIC allows a selection action over multiple options
create Specifies that the AIC is creating an item
delete States that the AIC is dedicated to the deletion of items
modify States that the AIC is dedicated to the modification of items
move States that the AIC allows the movement of an item
duplicate States that the AIC allows the creation of copies of an item
toggle States that the AIC specifies the existence of two different states of an

item
convey States that the AIC expresses an information without specifying

the employed modality: graphical, vocal, etc.[USIX06]
Table 3-1. Definition of possible values for the actionType attribute of a facet

The actionItem characterizes the item that is manipulated by the AIC. The possible values

(Table 3-2) are identical to those of taskItem attribute of a task from the Task Model.
actionItem Definition
element Specifies that the item has a single characteristic
container Specifies that the item is an aggregation of elements
operation Specifies that the item is a function
collection of Specifies that the item is composed of a list of elements

3. Conceptual Modelling of Multimodal Web User Interfaces

 40

elements
collection of
containers

Specifies that an item is composed of a list of containers

Table 3-2. Definition of possible values for the actionItem attribute of a facet

By combining these two attributes a series of possible cases will appear. Table 3-3

exemplifies several possible associations.
actionType actionItem Example
start operation Search a definition of a word in an online

dictionary
stop operation Stop searching the definition
select element Select the gender of a person
create element Input a new email address in a form
delete collection of elements Erase a list of phone numbers
modify collection of containers Modify a list of addresses
move element Drag and drop a predefined shape from a

toolbar to the working area
duplicate collection of elements Copy the coordinates of a person (name,

email, fax, phone number)
toggle element Switching on/off the connection with a

network
convey

element Express the result of a computational
operation (the result can be expressed
graphically by displaying it on the screen
or vocally by system utterance)

convey container Express the starting date of a conference
(the day, month and year can be
displayed on the screen or can be uttered
by the system)

convey collection of elements Express the authors list of a book (the list
of authors can be displayed or can be
uttered by the system)

convey collection of containers Express the staring and ending date of a
conference (the day, month and year of
the staring date and, respectively the
ending date can be displayed or can be
uttered by the system)

Table 3-3. Examples of combinations between actionType and actionItem
attribute values

AUI Relationships are abstract relationships among AUI objects. Relationships may

have multiple sources and multiple targets. There are a couple of types of relationships,
between which:

• AbstractAdjacency: allows to specify an adjacency constraint between two AIOs
• AbstractContainment: allows to specify that an AC embeds one or more ACs or

one or more AICs

3. Conceptual Modelling of Multimodal Web User Interfaces

 41

• AuiDialogControl: enables the specification of a dialog control in terms of LOTOS
operators between AIOs.

 3.1.4 Concrete User Interface Model

Concrete User Interface (CUI) Model is a model that allows the specification of the
presentation and behavior of a UI with elements that can be perceived by the users
[Limb04b]. The CUI abstracts a Final UI in a definition that is independent of programming
toolkit peculiarities.

CUI Model (Figure 3-5) concretizes the AUI for a given context of use into Concrete
Interaction Objects/Components (CIOs/Components) and Concrete User Interface Relationships so as to
define layout and/or interface navigation of 2D graphical widgets and/or vocal widgets.

CIOs realize an abstraction of widget sets found in popular graphical and vocal
toolkits (e.g., Java AWT/Swing, HTML 4.0, Flash DRK 6, VoiceXML). A CIO is defined as
an entity that users can perceive and/or manipulate (e.g., window, push button, text field,
check box, vocal output, vocal input, vocal menu). Because UsiXML considers both
graphical and vocal modalities, CIOs are further divided into two types: graphicalCIOs and
vocalCIOs. A detailed explanation regarding the types of graphicalCIOs, vocalCIOs and the
corresponding Concrete User Interface Relationships between them, along with their semantics
and syntax is presented in the following sections.

Any CIO can have any number of behaviors. A behavior is the description of the triplet
event-action-condition that determines the UI change. In the following we offer a brief
description for each of the terms involved in the triple, but a more detailed documentation
can be found in [USIX06]:

• Event: specifies an expression triggering one or several actions. Events are
restricted to a specific event language. Graphical eventsTypes are described in
Section 3.2.1, while the vocal ones are identified and defined in Section 3.2.2.
The attribute eventContext allows mentioning the concerned CIO, depending on
the type of event. The attribute device is a reference to the device with which the
event is triggered.

• Action: is a process triggered by an event performed on a CIO. An action may be
a method call, a UI internal change, etc.

• Condition: enables to specify a pre/post-condition attached to an action. A
condition is expressed as a graph patters (i.e., a rule term) that must be fulfilled in
the specification before or after the application of an action. Conditions may be
combined with Boolean operators to compose complex conditions.

3. Conceptual Modelling of Multimodal Web User Interfaces

 42

Figure 3-5. Excerpt of the CUI Meta-model

 3.1.5 Final User Interface

The Final UI (FUI) is the operational UI, i.e. any UI running on a particular
computing platform either by interpretation (e.g., through a web browser) or by execution
(e.g., after the compilation of code in an interactive development environment).

3.1.6 Context Model
The Context Model (Figure 3-6) describes all the entities that may influence how the

user’s task is carrying out with the future UI. It takes into account three relevant aspects,
each aspect having its own associated attributes: user type (e.g., experience with device and/or
system, task motivation), computing platform type (e.g., desktop, PocketPC, PDA, GSM), and
physical environment type (e.g., lighting level, stress level, noise level). These attributes initiate
transformations that are applicable depending on the current context of use.

3. Conceptual Modelling of Multimodal Web User Interfaces

 43

Figure 3-6. Meta-model of the Context Model

3.1.7. Mapping Model

The Mapping Model (Figure 3-7) contains a series of related mappings between models
or elements of models. A mapping model serves to gather a set of pre-defined, inter-model
relationships that are semantically related. It consists of one to many interModelRelationships, a
part of them being used throughout the steps of the transformational approach:

• Manipulates: maps a task onto a domain concept (i.e., a class, an attribute, a
method or any combination of these types).

• Updates: is a mapping between any UI component (at abstract or concrete level)
and a domain attribute or instantiated attribute (at run time). Updates enables to
specify that a UI component provides a value for the related domain concept.

• Triggers: indicates a connection between a method of the Domain Model and a UI
individual component (either at the abstract or at the concrete level)

• IsExecutedIn: indicates that a task is performed through one or several ACs and
AICs.

• IsReifiedBy: maps the elements of an AUI onto elements of a CUI. This
relationship specifies how any AIO can be reified by a CIO.

3. Conceptual Modelling of Multimodal Web User Interfaces

 44

Figure 3-7. Meta-model of the Mapping Model

3.1.8 Transformation Model

Transformation Model (Figure 3-8) contains a set of rules enabling the transformation
of one specification (at a certain level of abstraction) into another or to adapt a specification
for a new context of use. A transformation rule realizes a unit transformation operation on a
model. It is composed of a:

• Lhs (Left Hand Side): models the pattern that will be matched in the host model
• Rhs (Right Hand Side): models the part that will replace the LHS in the host model
• Nac (Negative Application Condition): models the condition that have to hold false

before trying to match LHS into the host model
• AttributeCondition: is a textual expression indicating a condition scoping on

element attributes of the lhs of a transformation rule
• RuleMapping: defines the source and the target models of the transformation rule.

For instance, a rule may establish a mapping between a Task Model and an
Abstract Model. In this case, the source indicates the source model of the
mapping, while the target indicates the target model.

Transformation rules are applied in order to develop UIs following a specific
development path (e.g., forward engineering, reverse engineering, adaptation to context of
use). A development path is composed of development steps that can imply three types of
transformations depending on the development direction:

• Reification: consists in the derivation of the next lower model in our reference
framework

• Abstraction: consists in the derivation of the next upper model in our reference
framework

• Translation: is a type of model transformation adapting a set of UI models to a
target context of use.

A development step is decomposed into development sub-steps. A development sub-step is
realized by one (and only one) transformation system. A transformation system is composed
of a set of sequentially applied transformation rules. One transformation system applies one
sub-derivation unit [Limb04]. A sub-derivation unit is defined as a collection of derivation
rules that realize a basic development activity. A basic development activity has been
identified to sub-goals assumed by the developer while constructing a system, for instance
choosing widgets, defining navigation structure, etc

3. Conceptual Modelling of Multimodal Web User Interfaces

 45

Figure 3-8. Meta-model of the Transformation Model

3.2 Semantics
Semantics (in Latin letters semantikós, or significant meaning, derived from sema, sign) is

the study of meaning, in some sense of a term.
In this subsection we provide the semantics for the graphicalCIOs, vocalCIOs and

multimodalCIOs and the corresponding relationships between the involved objects which are
part of our transformational approach for the development of multimodal web UIs. The
semantics of the objects is defined based on [USIX06].

3.2.1 Graphical Concrete Interaction Object semantics

Graphical CIOs are divided into Containers and Individual Components.
Graphical Containers (GCs) (Figure 3-9) contain a collection of CIOs (either GICs or

GCs) that support the execution of a set of logically/semantically connected tasks. We
define here the semantics of several of the most used types of containers:

• Window: is a container that can be found in almost all 2D graphical toolkits. A
window may contain other graphical containers.

• Box: is a container that enables an unambiguous structuring of GICs within a
window, a tabbedItem, a dialogBox. Boxes are embedded one into each other.
They may be of type main (the topmost box in a container), horizontal, or
vertical.

3. Conceptual Modelling of Multimodal Web User Interfaces

 46

• GroupBox: allows to group a set of GICs. A group of option buttons is a typical
use of a groupBox. Normally a groupBox does not contain any other
graphicalContainer.

• TabbedDialogBox: is a group of dialogBoxes where each dialogBox is accessible via
a tab mechanism. A tabbed dialogBox is composed of tabbedItems.

• Toolbar: is a bar containing a series of selectable buttons that give the user an easy
way to select different items.

• MenuPopUp: is a menu of commands or options that appears when an item is
selected. The selected item is generally at the top of the display screen, and the
menu appears just below it.

Figure 3-9. Graphical containers

Graphical Individual Components (GICs) are objects contained in GCs. They realize an

abstraction of widgets found in most popular graphical toolkits (e.g., Java AWT/Swing,
HTML 4.0, Flash DRK 6). Figure 3-10 shows a part of GICs defined in [USIX06] which is
an improved version of [USIX05]. This new version offers more graphical widgets and
attributes and a more clear difference between them. For instance, in order to distinguish
between components that allow handling input and output textual content, the textComponent
object from [USIX05] has been splitted into inputText and outputText. For a full definition of

3. Conceptual Modelling of Multimodal Web User Interfaces

 47

all the GICs and their associated attributes please refer to [USIX06]. In the following we
offer the semantics of several types of GICs:

• InputText: is a GIC specialized for handling input textual content
• OutputText: is a GIC specialized for handling output textual content
• Button: is alternatively called trigger button as its aim is to trigger any kind of

action available in the system
• Checkbox: enables a Boolean choice by checking a square box aside of a label.
• RadioButton: enables a Boolean choice by checking a circle aside of a label. An

optionButton may be differentiated from a checkBox by the fact that when
grouped optionButton selection is mutually exclusive while checkBox allows
multiple choices.

• ComboBox: enables a direct selection over a collection of sequentially, predefined
items. It might also enable editing new items.

• ImageComponent: is a GIC specialized for handling image content.
The classification of a set of typical events specified by the attribute eventType of the event
class (Figure 3-5) is done in [Limb04b]. Two categories of event types are identified: system
events and graphical user interface events.

Figure 3-10. Some Graphical Individual Components

3. Conceptual Modelling of Multimodal Web User Interfaces

 48

3.2.2 Vocal Concrete Interaction Object semantics
[USIX05] supports the vocal modality through the definition of Auditory Interaction

Objects which can be Auditory Containers or Auditory Individual Components. Auditory Containers
represent a logical grouping of other containers or Auditory Individual Components. Auditory
Individual Components are of two types: auditoryOutput which may consist in music, voice or a
simple earcon (i.e., an auditory icon) or auditoryInput which is a mere time slot allowing users
to provide an auditory input using her voice or any other physical device able to produce
sound. Auditory relationships are also provided and are of two types:

• AuditoryTransition: enable to specify a transition between two auditory containers
• AuditoryAdjancency: indicates the time adjancency between two auditory

components.
The definitions offered in [USIX05] concerning the vocal elements suffer from a series of
shortcomings:

• It does not provide a specialized container that enables a dialog between the
system and the end-user (i.e., synthesize data from the system and/or collects
data from the user). This is helpful in order to better differentiate from vocal
containers that act just as basic containers for all containers and individual
components

• It does not provide a specialized vocal container that allows users to choose
between different options. This is extremely useful as a usual vocal dialog
consists often in multiple choice questions

• It does specify explicitly the type of the system’s output. The output could
provide the user with prompt information that is synthesized or could provide
with some feedback following a previously processed input

• It does not allow to interrupt the execution of the current container or even of
the entire application. For instance the end-user would like to put end to a sub-
dialog which does not provide her with any useful information or to stop
interacting with the application due to an unexpected outer system task.

Based on the requirements specified above, in [USIX06] we have redeveloped the
vocal part described in [USIX05] by offering a more detailed set of vocalCIOs (Figure 3-11)
that covers the requirements of vocal and multimodal UIs (Requirement 1. Support for
multimodal input and Requirement 2. Support for multimodal output)). As graphicalCIOs,
the vocalCIOs are divided into Containers and Individual Components. Vocal Containers
(VCs) represents a logical grouping of other VCs or VICs. There are several types of VCs.
All of them inherit the isOrderIndependent attribute which indicates if the inputs of the
container can be filled in any order or not:

• VocalGroup: is the root element of all vocalCIOs. Acts as a basic container for all
VCs and VICs.

• VocalForm: enables a dialog whose purpose is to synthesize data from the system
and/or collect data from the user.

• VocalMenu: is a VC that allows to choose among different vocalMenuItems.
• VocalConfirmation: is a VC that requests from the user a confirmation of a

previous input. Is composed of a vocalPrompt that solicits the confirmation
followed by a vocalInput gathering the user's input. For instance, "Do you want
to delete this file? Say Yes or No."

3. Conceptual Modelling of Multimodal Web User Interfaces

 49

VocalIndividualComponents (VICs) are vocalCIOs contained in a VCs. All VICs inherit
the attribute keyboardShortcut that is the DTMF representation of the output. The possible
values are {0-9, #, *}. VICs are of six types:

• VocalOutput: is an object used to synthesize data to the user. This data is specified
in the attribute defaultContent inherited from the CIO class. An attribute volume
specifies the sound volume expressed in Db (decibel). The intonation attribute
expresses the dominant tone according to which the vocalOutput will be
synthesized: positive, negative, interrogative, exclamative. Pitch is the perceptual
attribute of a vocalOutput which enables the user to locate the sound on a scale
from low (1) to high (5). An attribute isInterruptible specifies if the vocalPrompt
can be interrupted by a user’s utterance. A vocalOutput can be further sudevided
into:

 VocalFeedback: is a vocalOutput providing the user with some feedback
following a previously processed vocalInput. For example: "Your answer
was: male".

 VocalPrompt: is a vocalOutput providing the user with prompt
information that will be synthesized. If there is an audio file to be played,
the attribute audioSource specifies its URI.

 VocalMenuItem: is a vocalOutput presenting a menu item belonging to a
vocalMenu. The DTMF sequence corresponding to this item is specified
by the DTMF attribute. For example: the sequence of strokes 1-3-5 will
select directly this vocal item. The nextForm attribute specifies the
reference to the vocalForm attached to this vocalMenuItem either as a
string (the id of the vocalForm) or as a URI (an external reference).

• VocalInput: is an object used to gather input from the user by speech recognition.
The elapsedTime attribute is the input duration in which the user is allowed to
utter the input. The duration is expressed in seconds. An attribute grammar
specifies a set of utterances that a user may speak in order to perform an action
or to supply an information.

• VocalNavigation: specifies a transition to another vocalForm. The navigationType
attribute defines the navigation type. Allowed values are link, submit and goto.
An attribute isBridgeable indicates if the source document remains active during
the navigation.

• Break: interrupts the execution of the current VC.
• Exit: terminates the execution of the vocal application.
There are four possible values of event types that can be associated to vocalCIOs.

These values are specified by the eventType attribute of the event Class (Figure 3-5):
• Error: catches all events of type error.
• Help: catches a help event.
• NoInput: catches a no input event.
• NoMatch: catches a no match event.

3. Conceptual Modelling of Multimodal Web User Interfaces

 50

Figure 3-11. Vocal Interaction Objects

For a better understanding of the concepts defined above we exemplify graphically

two possible vocal interactions between the system (S) and the end-user (U). The first dialog
(Figure 3-12) describes the fulfillment of the Provide age task by an end-user. The involved
vocalCIOs are described in the order of dialog flow:

• VocalForm: is the VC that contains all the vocalCIOs involved in the dialog
• VocalPrompt: is the VIC used to invite the user to input her age
• VocalInput: is the VIC that gathers the user’s input (the age) by speech

recognition
• VocalConfirmation: is the VC which solicits the confirmation of the introduced

age
• VocalFeedback: is the VIC that provides the user with the feedback regarding

the previously introduced age
• VocalPrompt: is the VIC used to invite the user to confirm the previously

provided feedback
• VocalInput: is the VIC that gathers the user confirmation by speech recognition

Figure 3-12. VocalCIOs involved in the fulfillment of Provide age task

The second dialog (Figure 3-13) describes a virtual shop where users can buy ice

cream. It consists of two basic sub-tasks: first the user provides her name to the system and

3. Conceptual Modelling of Multimodal Web User Interfaces

 51

the she chooses her favorite flavor. The involved vocalCIOs are described in the order of
dialog flow:

• VocalGroup: is the upper most VC that contains all vocalCIOs involved in the
dialog

• VocalForm: is the VC that contains the vocalCIOs involved in the fulfillment of
first sub-task

• VocalPrompt: is the VIC used to welcome the user to the virtual ice cream shop
and to invite her to input the name

• VocalInput: is the VIC that gathers the user’s input (the name) by speech
recognition

• VocalMenu: is the VC that allows to choose between different flavors of the
icecream

• VocalMenuItem1: is the VIC used to specify the first flavor (vanilla)
• VocalMenuItem2: is the VIC used to specify the second flavor (chocolate)
• VocalMenuItem3: is the VIC used to specify the third flavor (lemon)
• VocalInput: is the VIC that gathers the user’s input (the favorite flavor) by

speech recognition
• VocalFeedback: is the VIC that provides the user with the feedback regarding

the previously introduced flavor

Figure 3-13. VocalCIOs used for a Virtual ice cream shop

3.2.3 Multimodal Concrete Interaction Object semantics

MultimodalCIOs are obtained as a result of the combination between graphicalCIOs and
vocalCIOs.

Table 3-4 identifies for a set of popular widgets a possible correspondence with
CIOs. This identification is done for three types of UIs (i.e., graphical, vocal, multimodal). A
correspondent rendering for each of them is illustrated also. For multimodal user interfaces
we consider the guidance (ensured by representative icons), a design option detailed in
Section 4.3.3.2.

1. Label:
• Graphical interaction: ensured by outputText.
• Vocal interaction: ensured by vocalPrompt.

Example: the system is uttering: “Welcome to the UCL web site”.
• Multimodal interaction: ensured by outputText and vocalPrompt

3. Conceptual Modelling of Multimodal Web User Interfaces

 52

Example: the outputText contains the underlined word “Welcome”. By
clicking on it the system will utter (vocalPrompt) the entire welcome text:
“Welcome to the UCL site”.

2. Label + Text field:
• Graphical interaction: ensured by outputText and inputText.
• Vocal interaction: ensured by vocalPrompt and vocalInput.

Example:
 Computer (vocalPrompt): “Please say your name”
 User (vocalInput): “Andy Garcia”

• Multimodal interaction: ensured by outputText, inputText, vocalInput and
guidance (representative icons).
Example:

 The user is inputting his name using the microphone (vocalInput):
“Please say your name”

 The system recognizes the input and displays it (inputText): “Andy
Garcia”

 The system is providing also a feedback (vocalFeedback) of the
recognized input: “Your name is Andy Garcia”.

3. Label + Combo box:

• Graphical interaction: ensured by an outputText and a comboBox with
items.

• Vocal interaction: ensured by vocalMenu with vocalItems and vocalInput.
Example:

 Computer (vocalMenu): “Select the credit card type. Choose between
(vocalItems) Visa, MasterCard or American Express.”

 User (vocalInput): “Visa”
 Computer (vocalFeedback): “Your choice is: Visa.”

• Multimodal interaction: is ensured by the following CIOs: outputText,
comboBox with items, vocalMenu with vocalItems, vocalInput and guidance
(representative icons).
Example:

 The user clicks on the Credit Card label (outputText)
 The system invites the user to choose between different credit cards

by vocally outputting the available possibilities (vocalMenu with
vocalMenuItems): “Select the credit card type. Choose between
(vocalItems) Visa, MasterCard or American Express.”

 The user in inputting his type of credit card using the microphone
(vocalInput): “Visa”

 The system graphically displays the recognized input (comboBox)
 The system also provides a feedback (vocalFeedback) of the

recognized input: “Your choice is: Visa.”

3. Conceptual Modelling of Multimodal Web User Interfaces

 53

4. Group of radio buttons:
• Graphical interaction: ensured by a groupBox embedding a set of

radioButtons.
• Vocal interaction: ensured by a vocalMenu with vocalItems and a

vocalInput.
Example:

 Computer (vocalMenu): “Please say your gender. Choose between
(vocalItems) male and female.”

 User (vocalInput): “Male”
• Multimodal interaction: is ensured by the following CIOs: a groupBox

embedding a set of radioButtons, a vocalMenu with vocalMenuItems, a
vocalInput and guidance (representative icons).
Example:

 The user clicks on the Gender label (the name of the groupBox)
 The system invites the user to choose his gender by vocally

outputting the available possibilities (vocalMenu with
vocalMenuItems): “Please say your gender. Choose between male
and female.”

 The user is uttering his gender using the microphone (vocalInput):
“Male”

 The system graphically displays the recognized input by checking the
corresponding radioButton.

5. Group of check boxes:

• Graphical interaction: ensured by a groupBox embedding a set of
checkBoxes.

• Vocal interaction: ensured by a vocalMenu with vocalItems and a
vocalInput.
Example:

 Computer (vocalMenu): “Please select your hobbies. Choose one or
more of the following: sport, travel, music, movies.”

 User (vocalInput): “Sport and music”
• Multimodal interaction: is ensured by the following CIOs: a groupBox

embedding a set of checkBoxes, a vocalMenu with vocalMenuItems, a
vocalInput and guidance (representative icons).
Example:

 The user clicks on the Hobbies label (the name of the groupBox)
 The system invites the user to choose his hobbies by vocally

outputting the available possibilities (vocalMenu with
vocalMenuItems): “Please select your hobbies. Choose one or more
of the following: sport, travel, music, movies.”

 The user is uttering his hobbies using the microphone (vocalInput):
“Sport and music”

 The system graphically displays the recognized input by checking the
corresponding checkboxes.

3. Conceptual Modelling of Multimodal Web User Interfaces

 54

6. Label + List box:

• Graphical interaction: ensured by an outputText and a listBox with items.
• Vocal interaction: ensured by a vocalMenu with vocalItems and a

vocalInput.
Example:

 Computer (vocalMenu): “Please choose your favorite singers: Chris
Hay, Lee Hardy, Paul Sheerin,...”

 User (vocalInput): “Lee Hardy”
• Multimodal interaction: is ensured by the following CIOs: an outputText, a

listBox with items, a vocalMenu with vocalItems, a vocalInput and guidance
(representative icons).
Example:

 The user clicks on the Singers label (outputText)
 The system invites the user to choose his favorite singers by vocally

outputting the available possibilities (vocalMenu with
vocalMenuItems): “Please choose your favorite singers: Chris Hay,
Lee Hardy, Paul Sheerin,...”

 The user is uttering his favorite singer(s) using the microphone
(vocalInput): “Lee Hardy”

 The system graphically displays the recognized input by checking the
corresponding item.

3. Conceptual Modelling of Multimodal Web User Interfaces

 55

User Interface type
Widgets Graphical interaction Vocal interaction Multimodal (graphical and

vocal) interaction

1. Label

outputText

Welcome to the UCL web
site

vocalPrompt

outputText + vocalPrompt +
guidance

1. Label + Text
field

outputText + inputText

vocalPrompt + vocalInput

outputText + inputText +
vocalInput + vocalFeedback +
guidance

3. Label + Combo
Box

outputText + comboBox +
items

vocalMenu + vocalItems + vocalInput

outputText + comboBox + items +
vocalMenu + vocalItems +
vocalInput + vocalFeedback +
guidance

4. Group of radio

buttons

groupBox + radioButtons

vocalMenu + vocalItems + vocalInput

groupBox + radioButtons +
vocalMenu + vocalItems +
vocalInput + guidance

3. Conceptual Modelling of Multimodal Web User Interfaces

 56

5. Group of check

boxes

groupBox + checkBoxes

vocalMenu + vocalItems + vocalInput groupBox + checkBoxes +
vocalMenu + vocalItems +
vocalInput + guidance

6. Label + List
Box

outputText + listBox +
items

 Singers:

vocalMenu + vocalItems + vocalInput

outputText + listBox + items +
vocalMenu + vocalItems +
vocalInput + guidance

Table 3-4. Correspondence between popular widgets and different types of CIOs

3. Conceptual Modelling of Multimodal Web User Interfaces

 57

3.2.4 Concrete User Interface Relationship semantics
Concrete User Interface Relationships (Figure 3-12) are relationships mapping two or more

CIOs. CUI Relationships always have at least one source object and at least one target
object. There are three types of relationships:
1. GraphicalRelationship: is a relationship mapping two or more graphicalCIOs. It is sub-

divided in:
• GraphicalTransition: is a relationship mapping one or several GCs by specifying a

navigation structure among the different containers populating a cuiModel.
According to [USIX05] the transitionType attribute allows the following values:
open, close, minimize, maximize, suspend/resume. In Section 4.3.3.2 we present
the Sub-task navigation, a design option that specifies the navigation between GCs
that support the execution of two different sub-tasks. This navigation implies
two simultaneous actions: deactivate the GC in which the source sub-task is
executed and activate the GC in which the target sub-task is executed. We add
activate and deactivate to the already existing set of values in order to offer a more
precise identification of transition type between GCs and to support the design
options for multimodal UIs. The transitionEffect attribute defines the animation
type to be used when a graphical transition is ensured from a source container to
a target container (e.g., wipe, box in, box out, fade in, fade out, dissolve, split).

• GraphicalAdjacency: allows to specify an adjacency constraint between two
graphicalCIOs. A graphical modality adjacency may be inferred from the order in
which components are place into horizontal box and vertical box. Consequently
it is never explicitly stated in the specification.

• GraphicalContainment: allows to specify that a GC embeds one or more GCs or
one or more GICs. The relationship is particularly useful for adding or deleting
GICs from a GC.

• GraphicalAlignement: specifies an alignment constraint between two GICs.
• GraphicalEmphasis: enables to specify that two or more GICs must be

differentiated in some way (e.g., with different color attributes).
2. VocalRelationship: is a relationship mapping two or more vocalCIOs. It is sub- divided

in:
• VocalTransition: enables to specify a transition between two VCs. The

transitionType attribute determines the type of transition (e.g., open, mute, reduce
volume, restore volume). The transitionEffect attribute allows a specification of an
auditory effect to the transition (e.g., fade-out, fade-in).

• VocalAdjacency: allows specifying an adjacency constraint between two vocal
CIOs. The delayTime attribute expresses a delay in milliseconds between two
vocal elements.

• VocalContainment: allows to specify that a VC embeds one or more VCs or one or
more VICs. This relationship is particularly useful for adding or deleting VICs
from VCs.

3. CuiDialogControl: enables the specification of a dialog control in terms of LOTOS
operators between any types of CIOs, be it graphical or vocal.

4. Synchronization: is a relationship that synchronizes vocalCIOs with graphicalCIOs in
multimodal UIs. The two interaction parts in a multimodal UI specified with UsiXML,
the vocal part and the graphical part are syntactically separated one of each other

3. Conceptual Modelling of Multimodal Web User Interfaces

 58

(Requirement 7. Separation of modalities). The synchronization between them ensures
that:

• Vocal input is returned to both vocalCIOs and graphicalCIOs
• Graphical input updates both vocalCIOs and graphicalCIOs.

For instance, if the user has to fulfill her name in a text field by employing the vocal
modality, the recognized result can be found both in the vocal element and in the text field.
If the user is typing the name, the introduced value will update both the text field and the
vocal element. There are four cases when the synchronization relationship can be used:

• Synchronization between 1 VIC and 1 GIC: the synchronization will be defined
directly between the VIC (i.e., the source) and the GIC (i.e., the target). For
instance, if we consider the task of fulfilling vocally the name of a person in a
text field, the designer has to ensure the synchronization between the vocal input
and the text field.

• Synchronization between 1 VIC and n GICs: the synchronization will be defined
between the VIC (i.e., the source) and the GC (i.e., the target) that embeds the
GICs. If the designer of the multimodal UI takes the decision of synchronizing
the VIC with the set of n GICs, then he must to embed the last ones into a GC.
For instance, we consider the task of fulfilling vocally the date in a form by using
three combo boxes (one for day, one for month and one for year). If the
designer wants to allow the fulfillment of the task with only one vocal input (e.g.,
“5th of May 2006”) then he has to embed all three combo boxes in the same GC
(e.g., a group box) that will be synchronized with the vocal input.

• Synchronization between n VIC and 1 GIC: the synchronization will be defined
between the VC (i.e., the source) that embeds the VICs and the GIC (i.e., the
target). For instance, if we consider the task of selecting vocally the date in a date
picker widget by using three separate vocal inputs (one for day, one for month
and one for year), the designer has to embed all three vocal inputs in the same
VC (e.g., vocalForm) that will be synchronized with the GIC.

• Synchronization between n VIC and n GIC: this situation must be decomposed in
order to reach one of the three situations described above. If the designer wants
to reach the first identified situation where 1 VIC is synchronized with 1 GIC,
then the source and the target of the synchronization relationship will be
establish by considering the appearance order of the VICs and GICs.

3. Conceptual Modelling of Multimodal Web User Interfaces

 59

Figure 3-14. Concrete UI Relationships

3.3 Syntax
Syntax is often opposed to semantics, in which case semantics pertains to what

something means, while syntax pertains to the formal structure in which something is
expressed.

 3.3.1 From Semantics to Concrete Syntax
As described in Sections 3.1 and 3.2, the semantics of UsiXML language is encoded

as UML Class Diagram. The syntax of UsiXML language has an XML-based format
structure. XML stands for eXtensible Markup Language and allows describing sets of data
with a tree-like structure. For the definition of valid XML elements, UsiXML considers
XML Schemas [W3C01]. Figure 3-15 illustrates the manual transformations (T1) applied in
order to produce XML Schemas from UsiXML class diagram concepts. The Instances of
UsiXML Class Diagram Concepts, i.e., the UsiXML objects, are transformed into UsiXML
specification (T2). Finally, the resultant specification is validated by the corresponding XML
Schema.

Figure 3-15. Generation of UsiXML specification

In the following we specify a set of UsiXML Class Diagram Concepts that are

subject of the transformation T1 illustrated in Figure 3-15. For each transformation an
example at of UsiXML objects submitted to transformations T2 is provided:

3. Conceptual Modelling of Multimodal Web User Interfaces

 60

• A class becomes an XML element and class attributes become XML attributes. Figure
3-16 exemplifies how an instance of a class is mapped into an XML element with
the associated attributes.

Figure 3-16. Transforming Class to XML element

• UsiXML source-target relationships are translated into an XML element whose name

specifies the name of the relationship. The created element embeds a source and a
target element that designates the source and the target of the relationship,
respectively. Figure 3-17 exemplifies how a graphicalTransition relationship
between two elements (i.e., a source represented by a button and a target
represented by a window) is transformed into UsiXML specification.

Figure 3-17. Transformation of UsiXML source-target relationship

• Inheritance relationship is transformed into an XML element whose name is the name

of the superclass. The name of the subclass is specified by the type attribute value
of the superclass and the attributes of the subclass become XML attributes of the
created element. Figure 3-18 presents two instances corresponding to two
different classes (i.e., input and output) that inherit attributes from the same
superclass (i.e., facet). For each instance an XML element named facet is created.
The attributes of the subclass instances (i.e., the inputDataType and outputContent)
become XML attributes of the corresponding facet element.

Figure 3-18. Transforming inheritance relationship into an XML structure

• Aggregate relationship corresponds to an XML structure where the client class and the

supplier class are transformed into XML elements according to the example
provided in Figure 3-16. The XML element generated from the client class embeds
the XML element generated from the supplier class. Figure 3-19 exemplifies how an

3. Conceptual Modelling of Multimodal Web User Interfaces

 61

instance of a client class (i.e., vocalMenu) and two instances of a supplier class (i.e.,
vocalMenuItems) are transformed into XML elements. The vocalMenu element will
embed the two vocalMenuItems elements. UsiXML takes advantage of the XML
document structure and allows to derive implicitly relationships between objects. For
instance, in Figure 3-19 the structure of UsiXML syntax allows to infer two
vocalContainment relationships: the vocalMenu VM1 embeds the vocalMenuItems VMI1
and VMI2, repsectively. Moreover, an adjacency relationship may be deduced from the
order of XML elements: there is a vocalAdjacency between vocalMenuItem VMI1 and
vocalMenuItem VMI2 inferred from the ordering of declaration of these elements
within the vocalMenu VM1).

Figure 3-19. Transforming aggregation relationship into an XML structure

3.3.2 Concrete Syntax of Interaction Objects
In this section we provide the UsiXML syntax for a series of widgets expressed in

three different types of UIs: graphical, vocal and multimodal. For multimodal UIs we
provide also the syntax for the synchronization relationship (see Section 3.2.4). Our
methodology aims at covering the CARE properties (Requirement 3. CARE properties
support for input modalities and Requirement 4. CARE properties support for output
modalities). Due to the fact that in this dissertation we target X+V applications, only
Assignment, Equivalence and Redundancy are supported. The Complementarity property requires
the system to perform data fusssion for input modalities and data fission for output
modalities. Neither data fussion nor data fission are currently supported by X+V browsers.
The current work takes into account only graphical and vocal modalities. Thus, we distinguish
the following types of interaction:

• Graphical interaction: no synchronization is required as there are only graphical
components involved

• Vocal interaction: no synchronization is required as there are only vocal
components involved

• Multimodal interaction with graphical assignment for input: no synchronization is
required as there are not any vocal input components involved

• Multimodal interaction with vocal assignment for input: synchronization between the
vocal input and the associated graphical component is required (isEnabled

3. Conceptual Modelling of Multimodal Web User Interfaces

 62

attribute of the graphical component is set to false in order to block the graphical
interaction)

• Multimodal interaction with equivalent input (graphical or vocal): synchronization
between the vocal input and the associated graphical component is required
(isEnabled attribute of the graphical component is set to true in order to allow the
graphical interaction)

• Multimodal interaction with redundant input (graphical and vocal): no synchronization is
required as the two inputs (i.e., the graphical and vocal) are gatherd by two
different chanels

• Multimodal interaction with redundant output (graphical and vocal): no synchronization is
required as the two outputs (i.e., the graphical and vocal) are provided by two
different chanels.

Our specification is based on Table 3-4. For each considered set of widgets we
provide the corresponding specification for some of the interaction types identified above.
Here we exemplify the Label + Text field widgets, while the specification for the rest of the
widges can be found in Annex A.

LABEL + TEXT FIELD:
• Graphical interaction:
<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="§var".../>
</box>

• Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§var".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §var".../>
</vocalForm>

• Multimodal interaction with graphical assignment for input and redundant

output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §var".../>
</vocalForm>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue=”§var”.../>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

• Multimodal interaction with vocal assignment for input and redundant output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§var".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §var".../>
</vocalForm>

<box id="b1" name="Box 1"...>

3. Conceptual Modelling of Multimodal Web User Interfaces

 63

 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="false".../>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

• Multimodal interaction with equivalent input and redundant output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Please say your name".../>
 <vocalInput id="VI1" name="Input 1" currentValue="§var".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your name is §var1".../>
</vocalForm>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Name".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC2" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <inputText id="IT1" name="Input 1" isEditable="true" currentValue="§var1".../>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="IT1"/>
</synchronization>

3.4 Stylistics
The objective of stylistics is to provide a representation of a set of defined objects in

order to facilitate their understanding and manipulation in tools. The representation can be
of different types (e.g., graphical, textual). The current section provides a graphical
representation for the vocal concrete interaction objects defined in Section 3.2.2.

vocalCIO Graphical
representation

vocalGroup

vocalForm

vocalMenu with
vocalMenuItems

3. Conceptual Modelling of Multimodal Web User Interfaces

 64

vocalConfirmation

vocalFeedback

vocalPrompt

vocalInput

vocalNavigation

break

exit

Table 3-5. Stylistics for vocal concrete interaction objects

3.5 Conclusions
The current chapter detailed the concepts of the framework selected and extended

for the development of multimodal web applications. The most important introduced
concepts refer to the vocal and multimodal concrete interaction objects (vocalGroup,
vocalForm, vocalMenu, vocalInput, vocalOutput, multimodal texfield, multimodal group of
radio buttons, etc.) for which we provided the semantics and syntax. In order to synchronize
the vocal and the graphical concrete interaction objects which are involved in multimodal
interactions, the synchronization relationship was introduced. In Chapter 4 we present in detail
a transformational approach based on design options for producing multimodal applications.

?

!

4. A Transformational Method for Producing Multimodal Web User Interfaces

 65

CHAPTER 4 A TRANSFORMATIONAL METHOD FOR PRODUCING
MULTIMODAL WEB USER INTERFACES

After introducing in Chapter 3 the concepts of our multimodal framework, the Chapter 4
presents the transformational method for producing multimodal web applications. Section
4.2 describes the details concerning the specification of transformations. Section 4.3
introduces a design space composed of design options for graphical and multimodal web
user interfaces. Based on these design options the 4 steps of the transformational approach
are detailed in Section 4.4. Finally, we present in Section 4.5 the tool support for the
transformational method.

4.1 Specification of transformation
Model-to-model transformations approaches were the subject of several recent

research works that tried to identify a mature foundation for specifying transformations
between models [Varr02, Mell03, Agra03]. The high number of works on model-to-model
transformation is mainly due to the Object Management Group (OMG) proposal on Model
Driven Architecture (MDA) [Mill03]. Several techniques have been surveyed in the literature
[Czar03], while in [Limb04] the most relevant ones are presented along with their
shortcomings:

• Imperative languages: text-processing languages that perform small text
transformations (e.g., Perl, Awk) cannot be considered to specify complex
transformation systems as they force the programmer to focus on very low-
level syntactic details

• Relational approaches: rely on declaration of mappings between source and
target element type along with the conditions in which a mapping must be
initiated. Relational approaches are generally implemented using a logic-
based programming language and require a clear separation of the source
and target models

• XSL Transformations: is designed to specify transformations between different
syntactical types of XML specifications. There are two main shortcomings
of XSLT applied to achieve model-to-model transformations: (1) high
complexity and lack of concision when managing complex sets of
transformations rules and (2) lack of abstraction; progressively constructing
the target XML specification entails an inclusion, in transformation rules, of
syntactic details relative to target specification

• Common Warehouse Metamodel: is an OMG specification that provides a set of
concepts to describe model transformation. Transformations are grouped in
transformation tasks, which are themselves grouped in transformation
activities. A control flow of transformation can be defined between
transformation tasks at this level. Even if transformations allow a fine-
grained mapping between source and target elements, CWM does not
provide us with a predefined language to specify the way elements are
transformed one to another.

In the context of this dissertation, model-based approaches for the development of
UIs, in general, and for MWUIs, in particular, involve a transformational approach which
consists of a successive application of transformations over initial abstract models that allow
refining them into more concrete models, until the Final User Interface is achieved [Stan05].

4. A Transformational Method for Producing Multimodal Web User Interfaces

 66

The current work considers a transformational approach based on graph transformation rules in
order to progressively move from the uppermost level, the Task and Domain Models, to
Abstract Model from which a Concrete Model is derived (Figure 4-1).

Figure 4-1. Progressive application of Rule – based transformations

In the following we motivate our choice based on [Czar03] which defines a

taxonomy for the classification of several existing and proposed model transformation
approaches. The taxonomy is described with a features model that makes explicit the
different design choices for model transformations. Figure 4-2 details the features of the
Transformation Rule approach based on which we emphasize the coverage of our
transformational approach.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 67

Figure 4-2. Identification of transformation rule approach features

1. Graph-based patterns
To ensure the progressive approach illustrated in Figure 4-1, UsiXML provides a

Transformation Model (see Section 3.1.8) containing a set of rules that applies successive
transformation to an initial representation (Requirement 9. Transformation-based
development). Transformations are encoded as graph transformation rules performed on the
involved models expressed in their graph equivalent (Requirement 12. Ontological
homogeneity). A set of graph transformation rules, known in the literature as graph rewriting rules,
gathered along with the graph on which they apply (called host graph) define a graph grammar.
The set of graph transformation rules are organized in a transformation catalog (Figure 4-3).
The rules in a transformation catalog are structured in development steps. For instance, passing
from Task Model to Abstract Model or passing from Abstract Model to Concrete Model are two
examples of development sub-steps. The development steps are further decomposed into
development sub-steps. A development sub-step is realized by one (and only one) transformation
system and a transformation system is realized by a set of graph transformation rules.

Figure 4-3. The structure of a transformation catalog

4. A Transformational Method for Producing Multimodal Web User Interfaces

 68

2. LHS/RHS
Graph rewriting rules are based on a pattern matching mechanism that selects a sub-

graph in a graph structure and applies to this sub-graph any type of transformation (adding,
deleting or modifying a node or an edge). A graph rewriting rule is defined as a set of two
graphs:

 LHS: is the Left Hand Side of the rule. It expresses a graph pattern that, if it
matches in the host graph, will be modified to result in another graph called
resultant graph. A LHS may be seen as a condition under which a transformation
rule is applicable.

 RHS: is the Right Hand Side of the rule. It is the graph that will replace the LHS in
the host graph.

 NAC: is the Negative Application Condition of the rule. The graph rewriting rules
used in the current dissertation are conditional graph rewriting rules. This
component is added in order to expresses a pre-condition that have to hold false
before trying to match LHS into the host graph. Several NACs may be associated
to a rule.

Figure 4-4 illustrates how a transformation system is applied on G, where G is the
graph representation of the initial UsiXML specification. The application of the rule implies
several steps:

a. Find an occurrence of LHS into G (this occurrence is called a match). If several
occurrences exist, choose one non-deterministically.

b. Check that NAC does not match into G. If there is a match then skip to onother
occurrence of LHS

c. Replace LHS by RHS
G is consequently transformed into G’ (the resultant UsiXML specification). All elements of
G that are not covered by the match are left unchanged.

The application strategy of the transformation systems supposes a sequential
execution of rules. Once a rule from a transformation system terminates to be applied, the
next rule will be executed and so forth until the last rule terminates. Then the next
transformation systems from the transformation catalog will be executed sequentially until
the last one.

Figure 4-4. Characterization of transformation in UsiXML

4. A Transformational Method for Producing Multimodal Web User Interfaces

 69

3. Syntactically Typed Patterns
Syntactically typed patterns represent patterns that are associated with meta-model

elements whose instances it can hold. In our case the typed graphs allow classifying nodes
and edges by attaching types to them. Attaching several nodes (or edges) to the same types
indicates a commonality in terms of properties between these nodes (or edges). Figure 4-5
illustrates the correspondence between, on one hand, node and edge types at the model level
and, on the other hand, node and edge defined at the meta-model level.

Figure 4-5. Syntactically typed patterns and variables

4. Syntactically Typed Variables
Similar with patterns, syntactically typed variables are variables that are associated

with meta-model elements whose instances it can hold. Figure 4-5 shows the definition of
the type of salary variable which is instantiated in the lower level with the values of the
salaries for the two players.

5. Graphical concrete syntax of the patterns
The graphical concrete syntax of the transformation rules is based on the graphical

formalism employed by Attributed Graph Grammar (AGG) environment, a generic tool for
specifying and executing graph transformations [Ehri99]. Figure 4-6 illustrates the graphical
notations for: nodes, edges, node and edge types and node and edge attribute (variable)
values.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 70

Figure 4-6. Graphical concrete syntax of the patterns

Figure 4-7 shows one of the rules that can be applied to pass from the Task Model to

the Abstract Model. The rule can be interpreted as follows: for each task in the Task Model (see
LHS) create an AIC in which it will be executed (see RHS) unless the task is not already
executed into an AIC (RHS). In order to map the corresponding elements of the NAC, LHS
and RHS components of a rule, the graph formalism uses digits in front of mapped nodes
and edges (e.g., task 1 described in LHS corresponds to task 1 from NAC and from RHS).

 NAC LHS RHS

Figure 4-7. From Task Model to Abstract Model

6. Textual concrete syntax of the patterns
The textual concrete syntax of the rules is embedded in UsiXML. This textual syntax

allows storing rules in an XML-based format. Figure 4-8 offers an example of the equivalent
textual syntax of the rule illustrated in Figure 4-7.

 <transformationRule id="Rule5-4" name="Rule1_from_task_to_abstract">
 <nac>
 <task ruleSpecificId="N1" name="x"/>
 <abstractIndividualComponent ruleSpecificId="N2"/>
 <isExecutedIn>
 <source sourceId="N1"/>
 <target targetId="N2"/>
 </isExecutedIn>
 </nac>
 <lhs>
 <task ruleSpecificId="L1" name="x"/>
 </lhs>
 <rhs>
 <task ruleSpecificId="R1" name="x"/>

4. A Transformational Method for Producing Multimodal Web User Interfaces

 71

 <abstractIndividualComponent ruleSpecificId="R2" name="x"/>
 <isExecutedIn>
 <source sourceId="R1"/>
 <target targetId="R2"/>
 </isExecutedIn>
 </rhs>
 <ruleMapping sourceId="L1" targetId="N1"/>
 <ruleMapping sourceId="L1" targetId="R1"/>
 </transformationRule>

Figure 4-8. Textual syntax for expressing transformation rules

7. Declarative executable logic
Our graph grammars are based on formally defined execution semantics and have a

declarative logic as they are described by graph patterns expressions.

8. LHS/RHS Syntactic Separation
Our implementation of the transformation rules makes clear distinction between the

three components of a rule. Thus, the rule syntax (Figure 4-8) specifically marks the LHS,
RHS and NAC parts.

9. Bidirectionality
Bidirectionality is achieved by defining two separate complementary unidirectional

rules, one for each direction. [Limb04b] offers examples of forward and reverse engineering
processes where transformation rules where designed to move forward and backward
between different UI models.

 4.2 Design space for web user interfaces

The capabilities of multimodal applications running on the web are well delineated
since they are mainly constrained by what their underlying standard markup language offers,
as opposed to hand-made multimodal applications. As the experience in developing such
multimodal web applications is growing, the need arises to identify and define major design
options of such application to pave the way to a structured development life cycle.

Any software development life cycle should naturally evolve from early requirements
to detailed ones, until a final system is developed and deployed. This evolution inevitably
goes through identifying, defining, analyzing, comparing, and deciding between different,
potentially contradictory, alternatives that may affect the entire process. The User Interface
of this software does not escape from the aforementioned observations [Pala03].

We consider that a design option represents a design feature which effectively and
efficiently supports the progress of the development life cycle towards a final system while
ensuring some form of quality. For each design option, a finite set of design option values
denotes the various alternatives to be considered simultaneously when deciding in favor of a
design option. For instance, the design option “label location” in a UI layout could be set to
“left-aligned”, “centered”, or “right-aligned” depending on the layout type to be adopted for
the end user. When a particular design option value is assigned to a design option, it is
considered that a design decision is taken among the stakeholders representing the various
interests in the development life cycle (e.g., the end users, the marketing, and the
development team). The combination of design options forms a design space (Requirement 5.
Approach based on design space). The design space analysis [Limb00] represents a significant
effort to streamline and turn the open, ill-defined, and iterative [Rous05] interface design

4. A Transformational Method for Producing Multimodal Web User Interfaces

 72

process into a more formalized process structured around the notion of design option. A
design space consists of a n-dimensional space where each dimension is denoted by a single
design option. For this space to be orthogonal, all dimensions, and therefore all their
associated design options, should be independent of each other. This does not mean that a
dimension cannot be further decomposed into sub-dimensions. In this case, the design space
becomes a snowflake model.

Design options often involve various stakeholders representing different human
populations with their own preferences and interests. Consequently, design decisions often
result from a process where the various design options are gathered, examined, and ranked
until an agreement is reach among stakeholders. This decision process is intrinsically led by
consensus since stakeholders’ interests may diverge and by trade-off between multiple
criteria, which are themselves potentially contradictory.

Design options present several important advantages:
• When they are explicitly defined, they clarify the development process in a

structured way in terms of options, thus requiring less design effort and striving
for consistent results if similar values are assigned to design options in similar
circumstances.

• Defining a design option facilitates its incorporating in the development life cycle
as an abstraction which is covered by a software, perhaps relying on a model-
based approach. Ultimately, every piece of development should be reflected in a
concept or notion which represents some abstraction with respect to the code
level as in a design option. Conversely, each design option should be defined
clearly enough to drive the implementation without requiring any further
interpretation effort. For example, the design option “label location” will be
transformed into widgets’ locations satisfying the corresponding constraints.

• The adoption of a design space supports the tractability of more complex design
problems or for a class of related problems.

On the other hand, design options also suffer from some shortcomings: design
options could be very numerous, even infinite in theory. But in practice, it is impossible to
consider a very large amount of design options because of several reasons:

• They are too complex or expensive to implement
• They do not necessarily address users’ needs and requirements
• they are outside the designer’s scope of understanding, or imagination, or

background
• Their decision is not always clear and when they are decided, they may violate

some other usability principle or guideline. For example, deciding a particular
design option may lead to a design which is probably feasible to be implemented,
but which is likely to be unusable or inconsistent. Reducing a design to a set of
design options may restrict the designers’ creativity or could be perceived as such.
Design options anyway and anyhow always represents a restrictions of the
complete design space, the problem being to identify the relevant ones and
leaving out the too detailed ones that do not affect the UI quality

• Not all design options could be discovered or defined in an independent way as
they sometimes appear very intertwined. Not all the possible values of a design
option may be equal in implementation cost.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 73

We believe that it is important to define such a design space for web applications
because of several reasons: the languages in which they are implemented (e.g., XHTML,
VoiceXML, X+V) restrict the amount of possible interfaces to obtain and directly set the
CARE properties to assignment and equivalence. In addition, the interaction styles [Beau00]
supported by these languages make them appropriate for certain types of applications (e.g.,
information systems), but totally inadequate for other types (e.g., air traffic control) [Macl89].
Multimodal web applications typically combine three interaction modalities: graphical (e.g., a
XHMTL web page in a web browser), vocal (e.g., a VoiceXML application through a
multimodal web browser), tactile (e.g., a X+V application running on an interactive kiosk
equipped with a tactile screen). Any of these modalities could be combined together, thus
multiplying the combination of design options which are specific to each modality and
complexifying the entire design space. Sometimes, a design option which was estimated
relevant for a particular modality (say the graphical channel) may become totally irrelevant
when this modality is combined with another one (say with the vocal channel). The
fusion/fission mechanism is generally the one implemented in the browser with which the
multimodal web application is run. Independently of any implementation or tool support,
having at hands a design space where a small, but significant, set of design options could be
envisaged is a contribution which could be useful to any designer of a multimodal web
application. This provision avoids designers to replicate the identification and definition of
these design options, while leaving them free to consider other options or to overwrite
existing ones.

 4.2.1 Design options for graphical web user interfaces

We have identified a number of five design options for graphical web user interfaces.
These design options are illustrated in Figure 4-9.

Figure 4-9. Design options for graphical web user interfaces

Sub-task presentation. Specifies the appearance of each sub-task in the final user

interface. The possible values are illustrated in Figure 4-10. The presentation of each sub-
task can be either separated or combined. Separated presentation identifies the situation
when each sub-task is represented in different containers (e.g., different windows), while the
combined value identifies the situation when all sub-tasks are presented in the same
container. In the last case three different types of combinations are possible:

• One by one: only one sub-task is presented at a time (e.g., in combined box, in
tabbed dialog box, in float window)

• Many at once: multiple sub-tasks are presented in the same time (e.g., in float
window)

• All in one: all sub-tasks are presented in the same time (e.g., in areas with
separators, in group boxes, in bulleted list, in numbered list).

4. A Transformational Method for Producing Multimodal Web User Interfaces

 74

Figure 4-10. Final representation of sub-task presentation design option

Sub-task navigation. Is an extension of the notation introduced in [Vand03]. It
specifies the way in which the navigation between the sub-tasks is ensured. Figure 4-11
illustrates the two possible values: sequential or asynchronous. The sequential navigation, also
called synchronous, restricts the transfer of the dialog control only to a neighbor presented
sub-task. The asynchronous type offers more flexibility in transferring the dialog control by
eliminating the above restriction and allowing a transfer from any source sub-task to any
target sub-task. Passing the dialog control from a source sub-task to a target sub-task implies
two simultaneous actions (see Section 3.2.4): deactivate the container in which the source sub-
task is executed (represented here with a yellow bulb) and activate the container in which the
target sub-task is executed (represented here with a red bulb).

Figure 4-11. Types of navigation between sub-tasks

Concretization of navigation and control. Is a design option that specifies if the

navigation and control are ensured by the same object. In Figure 4-12, the separated value
identifies the situation in which the control and the navigation between the sub-tasks are
attached to different objects/logically grouped set of objects. When the same object ensures
simultaneously the navigation and the control, the value of the design option is combined.

Navigation concretization. Identifies the placement and the cardinality of the
navigation objects/logically grouped set of objects that ensure the navigation. Figure 4-13
illustrates the different values of the design option. There are two types of placement for the
navigation objects:

4. A Transformational Method for Producing Multimodal Web User Interfaces

 75

• Local placement: specifies the existence of a navigation object attached to each
presented sub-tasks

• Global placement: a general object ensures the whole navigation between the sub-
tasks.

The cardinality specifies the number of objects that ensures the navigation. We have identified
two types of cardinality:

• Simple: the navigation is ensured by a single object (e.g., an OK button) or a single
logically grouped set of objects (e.g., the (NEXT, PREVIOUS) group of buttons)

• Multiple: the navigation is ensured simultaneously by two or more objects/logically
grouped set of objects (e.g., the group of tab items in a tabbed dialog box and the
(NEXT, PREVIOUS) group of buttons).

Figure 4-12. Navigation and Figure 4-13. Types of navigation
 control concretization

Control concretization. Identifies the placement and cardinality of the control objects.
Figure 4-14 illustrates the different values of these design options. There are two types of
placement of the control objects:

• Local placement: specifies the existence of a control object attached to each presented
sub-tasks

• Global placement: a general object ensures the control for each sub-task.
The cardinality specifies the number of objects that ensure the control. We have identified
two types of cardinality:

• Simple: the navigation is ensured by a single object (e.g., an OK button) or single
logically grouped set of objects (e.g., the group of tab items in a tabbed dialog box)

• Multiple: the navigation is ensured simultaneously by two or more objects/logically
grouped set of objects (e.g., the group of tab items in a tabbed dialog box and the
(NEXT, PREVIOUS) group of buttons).

4. A Transformational Method for Producing Multimodal Web User Interfaces

 76

 Figure 4-14. Types of control concretization

4.2.2 Design options for vocal web user interfaces
We have identified a number of five design options for vocal user interfaces. These

design options are illustrated in Figure 4-15.

Figure 4-15. Design options for vocal user interfaces

Vocal sub-task navigation. Specifies the way in which the navigation between the

vocal sub-tasks is ensured. This design option has two possible values:
• Sequential: the order of the sub-task fulfillment is decided be the system. An

example of sequential navigation is presented in the following:
System: “What is your zip code?”
User: “1348”
System: “Please say your gender.”
User: “Female”

• Asynchrounous: the order of the sub-task fulfillment is specified by the end-
user. An example of asynchrounous navigation is offered below:
System: “What information would you like to input?”
User: “Gender”
System: “Please say your gender.”
User: “Female”

Sub-task guidance. Specifies if the end-user in guided with the possible answers
he/she might input. The possible values are:

• With guidance: the system provides the possible answers to the end-user. An
example is offered in the following:
System: “Select the car color. Choose between green, red and black.”
User: “Red”

4. A Transformational Method for Producing Multimodal Web User Interfaces

 77

• Without guidance: no possible answer is provided. This situation appears
especially when the answers are predictable. For instance:

 System: “What is your gender?”
User: “Male”.

Answer type. Specifies if there are any ambiguities in the users’s answer. The
possible values are:

• With disambiguities: the user’s answer is not detailed enougth. For instance:
System: “What is your weight?”
User: “85”

• Without disabiguities: the users’s answer is very precis. For instance:
System: “What is your weight?”
User: “85 kilograms”

 Answer cardinality. Specifies the number of items that are composing an end-user’s
answer. The possible values are:

• Simple: the end-user can select only one item in an answer. For instance:
System: “Which are your hobbies?”
User: “Sport”.

• Multiple: the end-user can select two or more items in an answer. For
instance:
System: “Which are your hobbies?”
User: “Sport and music.”

Confirmation answer. Specifies if the system requires a supplementary
confirmation for a user’s answer. The possible values are:

• With confirmation: the confirmation is required so as to clarify the answer.
For instance:
System: “What is your weight?”
User: “85”
System: “85 kilograms?”
User: “Yes”.

• Without confirmation: the user’s answer is clear enougth so that no
confirmation is required. If we consider the example below, the dialog
will be as follows:
System: “What is your weight?”
User: “85”

Answer order. Specifies the order in which the user’s answers will be treated by the
system. The possible values are:

• Order dependent: the user can input the answers in a predefined order and
the system will process them in the order that they were inputed. For
instance:
System: “What are your gender and age?”
User: “I am male and I am 24.”

• Order independent: the user has the flexibility of inputing the answers in any
order and the system has to map the answers to the correct location. For
instance:
System: “What are your gender and age?”
User: “I am 24 and I am male.”

4. A Transformational Method for Producing Multimodal Web User Interfaces

 78

System: “Your gender is male and you are 24 years old.”

 4.2.3 Design options for multimodal web user interfaces

In order to facilitate the development process of multimodal web applications we
introduce a set of four design options illustrated in Figure 4-16.

Figure 4-16. Design options for multimodal user interfaces

These design options take into consideration the ergonomic criteria for the

evaluation of human-computer interfaces presented in [Bast93]] and adapt them for the
development of MWUIs. For simplification, we consider here only two interaction
modalities, graphical and vocal, but other modalities can be taken into account later. For
each design option we provide a definition and we identify a list of possible values,
associating in the same time the corresponding CARE properties described in [Cout95].

Prompting. Refers to the interaction channels available in order to lead the users to
take specific actions whether it is data entry or other tasks. The possible values are: Vocal
(assignment), Graphical (assignment), Multimodal (equivalence, complementarity or
redundancy).

Grouping/Distinction of Items. Concerns the organization of information items
in relation to one another. This criterion takes into account the topology (location) and some
structural characteristics (format) in order to indicate the relationships between the various
items rendered, to indicate whether or not they belong to a given class, or else to indicate
differences between classes. This is further decomposed into:

• Input: any information input from the user to the system. The possible values
are: Vocal (assignment), Graphical (assignment), Multimodal (equivalence).

• Output: any information output from the system to the user. The possible
values are: Vocal (assignment), Graphical (assignment), Multimodal
(equivalence, complementarity or redundancy).

Immediate Feedback. The feedback is necessary for users to interpret the response
of the system to their actions [Cole85]. These actions may be simple keyed entries or more
complex transactions such as stacked commands. In all cases computer responses must be
provided, they should be fast, with appropriate and consistent timing for any transaction.
The possible values are: Vocal (assignment), Graphical (assignment), Multimodal (equivalence,
complementarity or redundancy).

Guidance. Refers to the means available to advise, orient, inform, instruct, and
guide the users throughout their interactions with a computer (messages, alarms, labels,
icons, etc.). We offer a more precise level of detail corresponding to the two possible types
of interaction considered in this section (i.e., graphical and vocal). Thus, the graphical
guidance is sub-divided into textual and iconic, while the guidance for the vocal interaction can
be acoustic or based on speech. The guidance is further sub-divided in:

• Guidance for input: any guidance offered to the user in order to guide him with
the input. The possible values are: Textual (assignment), Iconic (assignment),
Acoustic (assignment), Speech (assignment), or Multimodal (by combining the

4. A Transformational Method for Producing Multimodal Web User Interfaces

 79

previous values in an equivalent, complementary or redundant way). For
instance, a bell tone is an acoustic guidance which can be used to inform the
user that the system is ready for the user’s input.

• Guidance for immediate feedback: any guidance offered to the user in order to
guide him with the feedback. Textual (assignment), Iconic (assignment),
Acoustic (assignment), Speech (assignment), or Multimodal (by combining the
previous values in an equivalent, complementary or redundant way). For
instance, a percolating coffee pot is an acoustic guidance which can be used
to inform the user that the application system is busy processing.

4.3 The four steps of the transformational approach
Our transformational approach involves a method which consists of a forward

engineering process composed of four steps [Stan05] illustrated in Figure 4-17.
1. Step 1 - Construct the Task and Domain Models: the task and domain models are

specified first so as to initiate the forward engineering process
2. Step 2 – From Task and Domain Models to Abstract User Interface Model: the step

consists in producing one or many AUIs (that are independent of any
modality) from the Task and Domain Models previously specified

3. Step 3: From Abstract User Interface Model to Concrete User Interface Model: from
each AUI Model obtained in the previous step, different CUIs Models are
derived. Each CUI Model can specify graphical, vocal or multimodal UIs.

4. Step 4: From Concrete User Interface Model to Final User Interface: from each CUI, a
corresponding FUI can be produced by automated generation of code from
the models. Thus, for graphical UIs we generate XHTML code, for vocal UIs
we produce VoiceXML code, while multimodal UIs are specified using X+V
code.

Figure 4-17. General development scenario of UIs

In [Limb04b] steps 2 and 3 are further decomposed into sub-steps which consist of

transformation systems applied in order to generate graphical and vocal UIs based on

4. A Transformational Method for Producing Multimodal Web User Interfaces

 80

[USIX05]. In this dissertation we define transformation systems by associating the design
options defined in Section 4.2 to the different identified sub-steps of the transformational
process (Figure 4-18). Based on models described in [USIX06] we generate, not only
graphical and vocal UIs but multimodal ones, too.

The analysis of design options for multimodal UIs has to be achieved from two
perspectives:

• Feasibility of code generation: refers to the degree in which our transformational
approach allows to generate specifications based on design options

• Usability of UIs: is a quality attribute that assesses how easy UIs are to use when
developed based on design options. The analysis of the usability takes into
consideration the practicability of a selected set of usability principles applied
over the design options, over the rules in which they are concretizes and on the
application of the rules over the UsiXML models.

 The current dissertation is focused on the feasibility of code generation, while the usability
of the UIs is let to be done as an internal validation of the Ph.D. thesis associated to the
present dissertation.

Figure 4-18. Sub-steps of the transformational approach

 4.3.1 Step1: The Task and Domain Models
 The first development step consists in specifying the Task and Domain Models as a
starting point of our transformational approach. The generation of a Task Model (see
Section 3.1.1) supposes first the identification of the interactive tasks along with their

4. A Transformational Method for Producing Multimodal Web User Interfaces

 81

associated attributes. Further, the relationships between the tasks will be specified. The
Domain Model (see Section 3.1.2) consists in identifying the classes and their corresponding
attributes and methods manipulated by the user while interacting with the system. Domain
relationships between classes are further established by specifying their role names and
cardinalities. Once the Task and Domain Models are specified, the mappings between them
can be identified. Each task from the Task Model will be mapped into a corresponding
element from the Domain Model.

4.3.2 Step 2: From Task and Domain Models to Abstract User
 Interface Model

The second transformation step involves a transformation system (see Section 4.1)
that contains rules applied in order to realize the transition from the Task and Domain
Models to Abstract User Interface Model. It consists of the five development sub-steps
illustrated in Figure 4-19. The sub-steps are applied following a top-down logical order.

Figure 4-19.Development sub-steps for Step 2: From Task and Domain to AUI

4.3.2.a Rules for the identification of AUI structure
This sub-step consists in defining groups of AIOs that correspond to groups of tasks

tightly coupled together. For instance, child of the same task can be considered as a group of
tightly coupled tasks.

In order to identify the AUI structure the designer takes into consideration three
design options identified in Section 4.2.1:

• Sub-task presentation
• Sub-task navigation
• Navigation concretization
• Control concretization

Sub-task presentation. For the identification of the ACs the designer is resorting to

the sub-task presentation design option. As in the current step we generate a specification that
is independent of the modality, we consider only the values of the design options that can be
found at the Abstract level in the Figure 4-10. There are two possible options: the sub-tasks
of the same task can be presented separated (Figure 4-20) or combined into the same
container (Figure 4-21).

4. A Transformational Method for Producing Multimodal Web User Interfaces

 82

 Figure 4-20. Separated sub-task Figure 4-21. Combined sub-task presentation
 presentation

If the designer’s choice is for separated presentation of the sub-tasks the
transformation rule illustrated in Figure 4-22 can be applied. An AC is generated for each
sub-task of the same task (AC11, AC12 and AC13).

NAC LHS RHS

Figure 4-22. Generate abstract containers for each sub-task of the same task

For the second possible choice where the presentation of the sub-tasks is combined

two rules are applied. Figures 4-23 and 4-24 show the rules applied in order to create ACs
(AC11, AC12 and AC13) for each sub-task of the same task. The sub-tasks will be combined
into the same AC (AC1) in which the father task will be executed.

 NAC LHS RHS

Figure 4-23. Generate an abstract container for the father task

 NAC LHS RHS

Figure 4-24. Generate abstract containers for each sub-task of the father task

4. A Transformational Method for Producing Multimodal Web User Interfaces

 83

 Sub-task navigation. At the Abstract level the designer considers only the
generation of AIC that will ensure the navigation between sub-tasks. For instance, if we
consider the situation described in Figure 4-25 where each sub-task is executed into a
separated AC, rule described in Figure 4-27 generates AICs (AIC111, AIC121, and AIC 131)
that will ensure the navigation between these ACs.

Navigation concretization. In order to ensure the placement and the cardinality of
AICs, the designer considers the navigation concretization design option. From the
placement point of view there are two possible values: local placement (Figure 4-25) of the
AICs or global placement (Figure 4-26) of the AIC.

Figure 4-25. Local placement of navigation Figure 4-26. Global placement of navigation

The rules that ensure the Sub-task navigation design option (i.e., the generation of
AICs) are expressing simultaneously the placement of the AICs. If the designers’ decision is
for an UI where the navigation objects are locally placed, rule illustrated in Figure 4-27 is
generating AICs that are embedded in a corresponding AC (AIC111 embedded into AC11,
AIC121 embedded into AC12, etc.). On the contrary, if the designers’ decision is for a
general object that will ensure the entire navigation between sub-tasks, rule described in
Figure 4-28 can be applied to generate a single AIC (AIC11) embedded into the top-most
AC (AC1) that ensures the navigation between the embedded ACs (AC11, AC12 and AC13).

 NAC LHS RHS

Figure 4-27. Generate local placed AICs that ensure the navigation between sub-tasks

4. A Transformational Method for Producing Multimodal Web User Interfaces

 84

 NAC LHS RHS

Figure 4-28. Generate one global AIC that ensures the navigation between the sub-tasks

 From the cardinality point of view, one can design an UI where the navigation is
ensured only by one object (i.e., the cardinality is said to be simple) or simultaneously by two
or more objects (i.e., the cardinality is said to be multiple). In both cases described above the
cardinality of the navigation is simple as we are generating a single AIC for each sub-task
(the case of local placement) and only one AIC for the father task (the case of global
placement) that ensures the navigation. In the case of multiple cardinality, other rules have to
be developed and applied.

Control concretization. For the identification of the AICs that will ensure the
control of data for the sub-tasks mapped into their corresponding AC, the designer takes
into consideration the control concretization design option. The possible values for this design
option are identical with those of navigation concretization. By analogy, the rules applied to
generate the AICs that will take in charge the control are the same as those that ensure the
navigation concretization.

4.3.2.b Rules for the selection of AICs
The goal of this sub-step is to produce the specification of the AICs. As AICs

assume basic interaction functions throughout facets, our objective reduces to the selection
of the proper facets. In order to achieve this goal we take into consideration the information
contained in the Task and Domain Models, in particular the userAction and taskItem attributes
of a task along with the manipulates relationship that adds information on the domain
concepts manipulated by the task.

 Table 4-1 provides the mappings between task types and AIC facet types. The table
does not cover all the possible combinations of actions and items, it takes into account only
those that are used in the current dissertation. The left column identifies combinations of
values for userAction and taskItem attributes of a task, while the right column shows the
corresponding AIC facets, identifying their values for actionType and actionItem (see Section
3.1.3).

Task
userAction + taskItem

AIC facet
facet type + (actionType + actionItem)

Start + operation Control + (start + operation)
Start + operation Navigation + (start + operation)
Select + element Input + (select + element)
Create + element Input + (create + element)
Convey + element Output + (convey + element)

Table 4-1. Mappings between tasks types and AIC facets types

4. A Transformational Method for Producing Multimodal Web User Interfaces

 85

In the following we offer three transformational rules in order to exemplify the
above described mappings, identifying when possible the corresponding design options.
First rule (Figure 4-29) illustrates the generation of an output facet of type convey element
for each task that supposes a convey action from the part of the system. The task is
manipulating an attribute from the Domain Model.

NAC LHS RHS

Figure 4-29. Create an output facet that conveys an element

After generating the AICs in the previous sub-step, the current sub-step identifies

their types by associating a suitable facet. This sub-step considers three design options:
• Navigation concretization
• Control concretization
• Concretization of navigation and control

Navigation concretization. If a start operation task is manipulating a method from
the domain concept, the AIC will be endowed with a navigation facet of type start operation
(Figure 4-30).

NAC LHS RHS

 Figure 4-30. Create of navigation facet for AICs

Control concretization. A control facet will be generated by applying the rule

described in Figure 4-31. In this case the start operation task is manipulating an attribute
from the domain concepts.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 86

 NAC LHS RHS

Figure 4-31. Create a control facet for AICs

Navigation and control concretization. The designer considers two possible

options:
• Ensure the control and the navigation with separated objects (i.e., AICs can

have either a navigation facet either a control one)
• Ensure the control and the navigation with the same object which combines

simultaneously the two functions (i.e., AICs have two facets, one of type
navigation and one of type control). For instance, applying the last two rules
ensures a combined navigation and control by generating two facets, one of
type navigation and one of type control for the same AIC.

 4.3.2.c Rules for spatio-temporal arrangement of AIOs

 This sub-step ensures the arrangements of objects that populate the AUI by
specifying the layout constraints between the AIOs. These constraints are derived from the
Task Model structure. The order in which the tasks are specified allow designers to
determine the order of AIOs. For this purpose, the abstractAdjacency relationship is
employed (see Section 3.1.3).

For each couple of sister tasks executed into AIOs, we define abstractAdjacency
relationships between these AIOs. As AIOs can be of two types (i.e., ACs or AICs), there
are four possible combination to take into account. For each combination a specific rule is
considered. Moreover, in order to perform a complete arrangement, a rule should be defined
for each type of temporal relationships between the tasks.
 Figure 4-32 illustrates the rule that creates relationships of type “abstractAdjacency”
between each couple of ACs mapped into sister tasks connected by a sequential (“>>”)
temporal relationship.
 NAC LHS RHS

Figure 4-32. Creating abstract adjacency for <AC, AC> couple

4. A Transformational Method for Producing Multimodal Web User Interfaces

 87

4.3.2.d Rules for the definition of abstract dialog control
 This sub-step is transposing the temporal relationships defined between the tasks
into abstract relationships between AIOs. The dialog control [Limb04b] expresses the locus
of control (i.e., availability) for initiating the dialog in a UI. Dialog control consists of
controlling certain states of the user interface in order to enforce temporal constraints
imposed between elements of the interface.

In order to ensure the abstract dialog control we employ the auiDialogControl
relationship defined in Section 3.1.3. For each couple of sister tasks executed into AIOs, we
define an abstractDialogControl relationship between these AIOs that have the same
semantics as the temporal relationship defined between the tasks. As AIOs can be of two
types (i.e., ACs or AICs), there are four possible combinations to take into account. Figure
4-33 exemplifies a rule applied to generate an auiDialogControl relationship between two
ACs.
 NAC LHS RHS

Figure 4-33. Transposing auiDialogControl relationship for <AC, AC> couple

4.3.2.e Rules for the derivation of AUI to domain mappings
This sub-step consists in refining the manipulates relationship defined between

elements of the Task Model and elements of the Domain Model (see Section 3.1.7) into
relationships between AICs from Abstract Model and elements of the Domain Model. The
two refined relationship taken into consideration in the current dissertation are updates and
triggers (see Section 3.1.7).

Figure 4-34 illustrates the rule used to synchronize the AICs with the attribute of an
object from the Domain Model. The rule is applied for each task that manipulates an
attribute. The synchronization is ensured by updates mapping relationship.

NAC LHS RHS

Figure 4-34. Deriving updates relationships for AICs

For each task that manipulates a method, the AIC that executes the task will

trigger the method. The rule described in Figure 4-35 is generating a mapping
relationship of type triggers between the AIC and the method.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 88

NAC LHS RHS

Figure 4-35. Deriving trigger relationships for AICs

4.3.3 Step 3: From Abstract User Interface Model to Concrete
 User Interface Model

The third transformation step involves a transformation system (see Section 4.1) that
contains rules applied in order to realize the transition from the Abstract User Interface
Model to the Concrete User Interface Model. It consists of a set of development sub-steps
that are applied following a top-down logical order.

 4.3.3.1 Selection of modality

 The Concrete User Interface Model aims at defining a UI at a specification level that
is dependent of the modality. Is now that the designer has to select which are the available
modalities that will be employed in order to allow the interaction between the system and the
user. The selection of the modalities takes into consideration a series of aspects connected to
the context of use of the UI (see Section 3.1.6). Thus, the designer has to decide between
three different cases of UIs (Figure 4-17):

• Case 1: From AUI Model to Graphical CUI Model: the only available modality is the
graphical one

• Case 2: From AUI Model to Vocal CUI Model: only the vocal modality ensures the
system-user interaction

• Case3: From AUI Model to Multimodal CUI Model: both, graphical and vocal modalities
are employed in the system-user interaction. This dissertation do not considers other
interaction modalities, such as gesture, haptic, tactile, etc.

 4.3.3.2 Design option for the selected modality

For each type of Concrete User Interface identified in the previous Section, a
specific set of transformation sub-steps ise applied. Moreover, we associate the design
options defined in Section 4.2 to the different identified sub-steps.

Case 1: From AUI Model to Graphical CUI Model
The current case derives Graphical Concrete UIs from Abstract UI specifications by

applying a set of transformation rules classified in six development sub-steps (see Figure 4-
18).

4.3.3.a Reification of AC into CC
This sub-step is dedicated to the reification of AC into GC. In Section 4.3.2.a, the

identification of ACs was based on the sub-task presentation design option. As in the
current step we generate a specification that is modality-dependent, we consider the values
of the design options that can be found at the Concrete level of the Figure 4-10. Thus, in the
current sub-step we exploit the different possible final representations of the sub-task
presentation design option for graphical UIs.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 89

Sub-task presentation. If the designer’s choice is for a separated presentation of
the sub-tasks then rule illustrated in Figure 4-36 can be applied. The rule creates for each AC
corresponding to a sub-task a GC of type window that will embed a GC of type box.

NAC LHS RHS

Figure 4-36. Creation of a window and the corresponding main box for

each top-level AC

 In the case of combined sub-task presentation, the designer has three different types
possible combinations: (1) one by one, (2) many at once or (3) all in one. For each
combination a set of final graphical presentation of the sub-task has been identified (see
Section 4.2.1). If the designer chooses, for instance, a combined all in one sub-task
presentation under the form of group boxes, two rules have to be applied in order to achieve
the objective. First, the rule illustrated in Figure 4-36 will be applied, reifying the top most
AC into a GC of type window that embeds a GC of type box. Further, each AC contained
into the top-most AC, is reified into a GC of type groupBox (Figure 4-37).

NAC LHS RHS

Figure 4-37. Create a group box for each AC embedded into the top-most AC

4.3.3.b Selection of CICs
This sub-step supposes the identification of graphical concrete elements that

are the most suitable to support the functionalities of AICs ensured by their facets identified
in Section 4.3.2.b.

Table 4-2 provides mappings between AICs defined by their facets and GICs
in which they can be reified. The table does not cover all possible combinations of actions
and items that correspond to a facet, it takes into account only those that are used in the
current dissertation. The left column identifies the combinations of actionType and actionItem
attributes of AIC facets, while the right column shows the corresponding GIC type.

AIC facet

facet type + (actionType + actionItem)
GIC type

Control + (start + operation) button
Navigation + (start + operation) button
Input + (select + element) radioButton OR checkBox OR comboBox

4. A Transformational Method for Producing Multimodal Web User Interfaces

 90

item OR listBox item
Input + (create + element) inputText
Output + (convey + element) outputText

Table 4-2. Mappings between facet types and GIC types

In order to exemplify one of the mappings described in the above table, Figure 4-38
presents the rule applied to generate a GC of type outputText, each time when an output
facet of type create element is encountered.
 NAC LHS RHS

Figure 4-38. Create an outputText when an output facet of type create element is found

4.3.3.c Arrangement of CICs

This sub-step is applied in order to provide the concrete layout information of the
UI. It consists in a transposition of the abstractAdjacency relationship defined between each
couple of AIOs (see Section 4.3.2.c) into a graphicalAdjacency relationship between
graphicalCIOs that reify them. As AIOs can be of two types (i.e., ACs or AICs), there are
four possible combination to take into account. For each combination a specific rule is
considered. Figure 4-39 illustrates the rule that transposes the abstractAdjacency relationship
between two ACs into a graphicalAdjacency relationship between the GCs that reify these
ACs.
 NAC LHS RHS

Figure 4-39. Generation of Graphical Adjacency relationships for <GC, GC> couples

4.3.3.d Navigation definition

This sub-step aims at specifying the navigation structure among the different GCs
populating a UI. In Section 4.3.2.a the generation of AIC that will ensure the navigation
between containers was based on the sub-task navigation. In Section 4.3.3.b the AICs were
reified in their corresponding GIC.

Sub-task navigation. In the current sub-step the designer can define the navigation
type between GCs by endowing the GICs that ensure the navigation with graphical
transition features. There are two possible values of navigation: sequential and asynchronous.
For exemplification we consider three sub-tasks executed each one in a corresponding
groupBox. All group boxes are combined into the same window (Figure 4-40). The
navigation between the group boxes is ensured by the Ok and Cancel buttons. If the
designer’s choice is for a sequential navigation, the following scenario should be ensured:
once the user has fulfilled the information required in the group box corresponding to sub-
task 1, only the sub-task 2 can be activated (see navigation a). From the group box associated

4. A Transformational Method for Producing Multimodal Web User Interfaces

 91

to sub-task 2, there are two possibilities: returning to the sub-task 1 group box (see
navigation c) or continue with the sub-task 3 (see navigation b). From sub-task 3 group box
the user can activate only the sub-task 2 group box (see navigation d).

Figure 4-40. Sub-tasks presented into combined group boxes

In order to ensure the sequential navigation described above, rule illustrated in

Figure 4-41 is applied. The rule is generating graphicalTransition relationships that endow
the Ok and Cancel buttons with activation and deactivation power over the adjacent and current
GC, respectively.

 NAC LHS RHS

Figure 4-41. Endow the navigation buttons with graphicalTransition features

4.3.3.e Concrete dialog control definition

This sub-step realizes a transposition of auiDialogControl relationships defined
between each couple AIOs (see Section 4.3.2.d) into cuiDialogControl relationships between
graphicalCIOs that reify them. As AIOs are of two types (i.e., ACs and AICs), four rules
describing the four possible combinations are considered. Figure 4-42 illustrates the rule that
transposes the auiDialogControl relationship between two AICs into a cuiDialogControl
relationship between the GICs that reify these AICs.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 92

 NAC LHS RHS

Figure 4-42. Generation of Concrete Dialog Control relationships for <GIC, GIC>

couples

4.3.3.f Derivation of CUI to domain relationships
This step aims at transposing the relationships defined in Section 4.3.2.e to the

concrete level. Thus, relationships between GICs and domain objects will be defined. Figure
4-43 illustrates the rule used to map GICs with the corresponding attribute of an object
from the Domain Model. The updates relationship is transposed from the AIC that is
reified by the GIC.
 NAC LHS RHS

Figure 4-43. Transposition of update relationship

Case 2: From AUI Model to Vocal CUI Model
The current case aims at deriving Vocal Concrete UIs from Abstract UI

specifications by applying a set of transformation rules classified in six development sub-
steps (see Figure 4-18).

4.3.4.a Reification of AC into CC
This sub-step is dedicated to the reification of AC into VC. By analogy with Section

4.3.3.a, the current sub-step exploits the different possible final representations of the sub-
task presentation design option for vocal UIs.

Sub-task presentation. If the designer’s choice is for a separated presentation of
the sub-tasks, then the rule illustrated in Figure 4-44 can be applied. The rule creates for each
AC corresponding to a sub-task, a VC of type vocalGroup.

 NAC LHS RHS

Figure 4-44. Creation of a VC for each top-level AC

In the case of combined sub-task presentation, if the designer considers the value all

in one, he has to specify further the value of his choice. If for graphical UIs we have
identified a series of possible values (see Section 4.2.1), for vocal UIs the identification of the

4. A Transformational Method for Producing Multimodal Web User Interfaces

 93

values is difficult to achieve due to the nature of vocal applications. For instance, an
equivalent of the bulleted list value in vocal UI could be the following sequence: “Choose one
or more of these options: (beep) + Personal information + (3 seconds pause) + (beep) + Car information +
3 seconds pause + (beep) + Payment information”, while the equivalent of the numbered list could
be the sequence: “Choose one or more of these options: (dong) + Personal information + (3 seconds
pause) + (dong) + Car information + 3 seconds pause + (dong) + Payment information”.

The fulfillment of vocal sub-tasks presented in an all in one combined mode is also
difficult to achieve due to the sequential nature of vocal applications. An all in one value of
the sub-task presentation for a vocal UI supposes the simultaneously availability of two or
more vocal sub-tasks. For instance, if we refer to the example provided in Figure 4-39, in a
vocal UI the user should be able to fulfill the personal information and the car information
in the same time by saying: “My name is Juan and the car transmission type is manual”. From the
theoretical point of view the realization of the sub-tasks is feasible, but from the usability
point of view it is hard to achieve due to the limitations of the FUI.

However, we provide in the following the two rules that ensure a combined all in
one presentation of the vocal sub-tasks. First, the rule illustrated in Figure 4-45 will be
applied, reifying the top most AC in VC of type vocalGroup. Further, each AC contained in
the top-most AC is reified into a VC of type vocalMenu (Figure 4-46).

 NAC LHS RHS

Figure 4-45. Creation of the vocal group of the UI

NAC LHS RHS

Figure 4-46. Creation of vocalMenus for each AC embedded into the top-most AC

4.3.4.b Selection of CICs

By analogy with Section 4.3.2.b, we provide in Table 4-3 the mappings between AICs
defined by their facets and the VICs in which they can be reified. The left column identifies
the combinations of actionType and actionItem attributes of AIC facets, while the right
column shows the corresponding VIC type. The rules applied to generate a VICs are
obtained by a simple replacement of GICs from the rules described in Section 4.3.2.b with
the corresponding VIC identified in Table 4-3.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 94

AIC facet
facet type + (actionType + actionItem)

VIC type

Control + (start + operation) vocalInput
Navigation + (start + operation) vocalNavigation
Input + (select + element) vocalMenuItem + vocalInput
Input + (create + element) vocalPrompt + vocalInput
Output + (convey + element) vocalPrompt

Table 4-3. Mappings between facet types and VIC types

For the rest of the sub-steps: 4.3.4.c Arrangement of CICs, 4.3.4.d Navigation
definition, 4.3.4.e Concrete dialog control definition, 4.3.4.f Derivation of CUI to
domain relationships, the design of the rules is realized by analogy with the correspondent
sub-step of the graphical rules presented in Case 1. Thus, the GCs and GICs will be replaced
by VC and VICs, respectively.

Case3: From AUI Model to Multimodal CUI Model
The current case aims at deriving Multimodal Concrete UIs from Abstract UI

specification by applying a set of transformational rules classified in seven development steps
(see Figure 4-18). The rules applied in Case 1 for graphical UIs are joined with the rules
applied in Case 2 for vocal UIs, resulting new rules that will ensure the generation of
multimodal UIs. This will show the modularity and the extensibility of the transformation
rules [Stan05] by describing how vocal components are added to the already existing
graphical components.

4.3.5.a Reification of AC into CC

As described in the homologous sub-steps for graphical and vocal UIs (see Section
4.3.3.a and 4.3.4.a, respectively), the rules that ensure the current sub-step takes into
consideration the different possible final representations of the sub-task presentation design
option.

Sub-task presentation. If the designer’s choice is for a separated sub-task
presentation of the UI, the rule that will ensure this option is obtained by combing the rule
for graphical UIs illustrated in Figure 4-36 and the rule described for vocal UIs in Figure 4-
44. The resultant rule is presented in Figure 4-47.

NAC LHS RHS

Figure 4-47. Creation of a GC and a VC for each top-level AC

For combined all in one sub-task presentation under the form of group boxes, the

designer applies two rules. First, the rule from Figure 4-47 ensures the reification of each
top-level AC into a GC of type window that embeds a GC of type box and into a VC of type

4. A Transformational Method for Producing Multimodal Web User Interfaces

 95

vocalGroup. Further, the rule for graphical UIs illustrated in Figure 4-37 is combined with
the rule for vocal UIs from Figure 4-46. The resultant rule is presented in Figure 4-48.
 NAC LHS RHS

Figure 4-48. Creation of graphical and vocal containers embedded into the top most

containers

4.3.5.b Selection of CICs

In order to identify the multimodal CICs that are the most suitable to support the
functionalities of the AICs ensured by their facets, Table 4-4 provides a series of mappings
used in this dissertation. The table results from a combination of values presented in Tables
4-2 and 4-3. Please notice that the CICs provided in brackets ([]) are optional.

AIC facet
facet type + (actionType + actionItem)

GIC and VIC types

Control + (start + operation) button + vocalInput + [vocalFeedback]
Navigation + (start + operation) button + vocalNavigation + [vocalFeedback]
Input + (select + element) radioButton OR checkBox OR comboBox

OR listBox item + vocalMenuItem +
vocalInput+ [vocalFeedback]

Input + (create + element) inputText + vocalPrompt + vocalInput +
[vocalFeedback]

Output + (convey + element) outputText + vocalPrompt
Table 4-3. Mappings between facet types and GIC and VIC types

In the current sub-step the designer takes into consideration the four multimodal

design options identified in Section 4.2.3:
• Prompting
• Grouping/Distinction of Items
• Immediate feedback
• Guidance

Table 4-4 summarizes all possible renderings for combinations of Grouping for input
and Feedback design options for a text input in the context of Web UIs. As the current
dissertation addresses only graphical and vocal interactions, only these two modalities are
taken into account, but the proposition can be extended to other interaction modalities.
Depending of each combination, a specific guidance for input and feedback will be
associated.

Design options Rendering
Input = graphical (assignment)
Feedback = graphical (assignment)
Input = graphical (assignment)
Feedback = multimodal (equivalence)

4. A Transformational Method for Producing Multimodal Web User Interfaces

 96

Input = graphical (assignment)
Feedback = multimodal (complementarity)
Input = graphical (assignment)
Feedback = multimodal (redundancy)
Input= vocal (assignment)
Feedback= graphical (assignment)

Input= vocal (assignment)
Feedback= vocal (assignment)
(two different ways of displaying the
prompt)

vs.

Input= vocal (assignment)
Feedback= multimodal (equivalence)

Input= vocal (assignment)
Feedback= multimodal (complementarity)

Input= vocal (assignment)
Feedback= multimodal (redundancy)

Input= multimodal (equivalence)
Feedback= graphical (assignment)
Input= multimodal (equivalence)
Feedback=multimodal (equivalence)

Input= multimodal (equivalence)
Feedback=multimodal (complementarity)

Input= multimodal (equivalence)
Feedback=multimodal (redundancy)

Table 4-4. Combinations of input and feedback design options values for a text input

We exemplify the design options considered in the current sub-step with a possible
design decision (Figure 4-49) for a multimodal text input where the user has to provide her
name [Stan06]. The value of the prompt design option is multimodal as the system indicates
in a redundant way the task to fulfill by employing two modalities: graphical modality (the
label Name) and vocal modality used by the systems to invite the user to input his name (1).
The guidance for input is of type iconic and is composed of two elements (the microphone
icon and the keyboard icon) indicating the available interaction modalities. User’s input is of
type multimodal as it can be provided in an equivalent manner by employing either the
graphical modality (the user is typing his name in the text entry), either the vocal modality
(the user is uttering his name using the microphone (2)). The guidance for feedback is of
type iconic and is ensured by the loudspeaker icon, indicating the vocal feedback. The
feedback of the system to the user’s input is of type multimodal as it is expressed by means
off two redundant modalities: graphical (the result of users’ typing) and vocal (the system is
uttering the result of the input recognition (3)).

4. A Transformational Method for Producing Multimodal Web User Interfaces

 97

Figure 4-49. A possible design decision for a multimodal text input

Table 4-5 presents the design options and their CICs concretization for the

multimodal text input described above.
Design option Value CIC

Prompting Multimodal (redundancy) outputText + vocalPrompt
Grouping for input Multimodal (equivalence) inputText + vocalInput
Immediate feedback Multimodal (redundancy) inputText + vocalFeedback
Guidance for input Iconic (assignment) imageComponents (keyboard

icon + microphone icon)
Guidance for feedback Iconic (assignment) imageComponent (speakerIcon)

Table 4-5. Design option values for multimodal textInput widget (graphical and
vocal equivalence for input)

Rule illustrated in Figure 4-50 generates the multimodal text input described above

by creating a GC of type box that embeds two GICs: an inputText and an outputText (the
label associated to the inputText). The feedback is ensured by a VIC of type vocalFeedback.
The guidance for input is ensured by two GICs of type imageComponent represented with
keyboard and microphone icons, while the guidance for output is represented with a speaker
icon.
 NAC LHS RHS

Figure 4-50. Generation of a multimodal inputText (graphical and vocal equivalence for

input)

If the designers’ decision is for a multimodal text input that differentiate from the
above described example by (Table 4-6):

• The grouping for input changes from multimodal equivalence into vocal
assignment

4. A Transformational Method for Producing Multimodal Web User Interfaces

 98

• The immediate feedback changes from multimodal redundancy into
graphical assignment

• There is no more guidance for input,
then the rule illustrated in Figure 4-51 should be applied.

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalPrompt
Grouping for input Vocal (assignment) vocalInput
Immediate feedback Graphical (assignment) inputText
Guidance for input Iconic (assignment) imageComponents (microphone

icon)
Table 4-5. Design option values for multimodal textInput widget (vocal modality

assigned for input)

NAC LHS RHS

Figure 4-51. Generation of a multimodal inputText (vocal modality assigned for input)

4.3.5.c Synchronization of CICs

Comparing with the previous two cases (i.e., generation of graphical and vocal CUI
Models from the AUI Model), the current case dedicated to the generation of multimodal
CUI Models is introducing a new sub-step (Requirement 15. Methodological extendibility).
This sub-step aims at ensuring the coordination of vocalCIOs and the graphicalCIOs by
generating a synchronization relationship between them (see Section 3.2.4).

Hereafter we exemplify the synchronization relationship with two examples of rules
that allow its generation. If the designer wants to allow users to interact with a combobox
widget by employing the vocal modality, then he must ensure the synchronization between
the vocalInput that will gather the input from the user and the combobox. Thus, the rule
illustrated in Figure 4-52 generates a synchronization relationship between the VIC of type
vocalInput and the GIC of type comboBox. The synchronization is defined between the
currentValue x of the VIC and the currentValue y of the GIC.

Th second example corresponds to the designer’s decision of allowing users to
interact vocally with a text field. Thus, synchronization between the vocal input gathered
from the used and the inputText must be ensured. In order to reach this objective rule
illustrated in Figure 4-53 can be applied. It creates the synchronization relationship between
the VIC of type vocalInput and GIC of type inputText. The synchronization is defined between
the currentValue x of the VIC and the currentValue y of the GIC.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 99

NAC LHS RHS

Figure 4-52. Synchronization between a vocalInput and a comboBox

NAC LHS RHS

Figure 4-53. Synchronization between a vocalInput and an inputText

4.3.5.d Arrangement of CICs

 The current sub-step supposes the arrangement of graphicalCIOs and vocalCIOs.
The objective is achieved by applying the rules designed according to Section 4.3.3.c for
graphicalCIOs and the rules illustrated in Section 4.3.4.c for vocalCIOs.

4.3.5.e Navigation definition

 The current sub-step is achieved by applying the rules described in Section 4.3.3.d
for graphical components of the multimodal UI and the rules designed according to Section
4.3.4.d for vocal components.

4.3.5.f Concrete dialog control definition
This sub-step is achieved by applying the rules described in Section 4.3.3.e for

graphical components of the multimodal UI and the rules designed according to Section
4.3.4.e for vocal components.

4.3.5.g Derivation of CUI to domain relationships

This sub-step is achieved by applying the rules described in Section 4.3.3.f for
graphical components of the multimodal UI and the rules designed according to Section
4.3.4.f for vocal components.

4.3.4 Step 4: From Concrete User Interface Model to Final User
 Interface

This step aims at generating the source code of the FUI from the CUI. For each type
of CUI considered in the previous step (i.e., graphical, vocal and multimodal), a

4. A Transformational Method for Producing Multimodal Web User Interfaces

 100

corresponding source code will be automatically generated. Thus, for graphical UIs we
generate XHTML code, VoiceXML code is considered for vocal UIs, while multimodal UIs
will be supported be XHTML+Voice language. Further, we interpret the generated code
within a browser in order to obtain the corresponding FUI. We have used the following
browsers:

• For graphical FUI: any ordinary web browser (e.g., Internet Explorer, Mozilla)
• Vocal FUIs: interpreted with IBM VoiceXML browser
• Multimodal FUIs: interpreted within NetFront multimodal browser or Opera

browser. With respect to the CARE properties we consider only Assignment,
Equivalence and Redundancy. The input Complementarity requires the system to perform
data fussion whereas output Complementarity requires data fission. Neither data fussion nor
data fission are currently supported by X+V browsers. Therefore we have no
control over these aspects.

In order to support this step we present in the next Section several tools that have been
developed to provide code generation from models.

 4.4 Tool support

One of the main advantages of the design space introduced in Section 4.2 is given by
the fact that each design option composing the space is independent of any existent method
or tool, thus being useful for any developer of multimodal UIs. Under these circumstances,
it would be useful to provide an explicit support of the introduced design options
(Requirement 10. Machine processable).

In order to support the development of computer-aided design of MMWUIs, we
consider MultiXML, an assembly of five software modules [Stan06]. By using MultiXML, we
want to address a reduced set of concerns by limiting the amount of design options, thus
making the design space more manageable and tractable [Hoov91]. Figure 4-54 illustrates the
general development scenario of our transformational approach by identifying the five
modules of MultiXML tool along with the steps in which they are employed. MultiXML
offers the possibility of reusing the output provided by one module into another
(Requirement 16. Support for tool interoperability).

4. A Transformational Method for Producing Multimodal Web User Interfaces

 101

Figure 4-54. General development scenario – identification of MultiXML modules

 4.4.1 IdealXML
 IdealXML [Mont05] is a tool that is involved in the first step of the transformational
approach and allows designers to graphical describe the Task Model, Domain Model and the
mappings between them. Moreover, the tool enables to graphically specify the Abstract UI
Model, but due to the fact that the main objective of UsiXML is to provide a machine
processable language and then a human readable specification, in this dissertation we
generate the Abstract Model by employing the transformational approach.
 The Task Model (Figure 4-55) takes the form of a CTT notation introduced by
[Pate97]. The Domain Model (Figure 4-56) has the appearance of a class diagram, while the
Mapping Model (Figure 4-57) is specified by associating graphically elements of the Task
Model with elements of the Domain Model.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 102

 Figure 4-55. Task Model editor Figure 4-56. Domain Model editor

Figure 4-57. Mapping Model editor

 4.4.2 TransformiXML

The transformation approach is sustained in steps 2 and 3 by TransformiXML, the
core module of the MultiXML software that enables the definition and the application of
transformation rules based on design options. The tool is sub-divided into two components:

• TransformiXML API: a Java Application Programming Interface that is
employed to perform model-to-model transformations based on graph
transformation rules. In order to ensure this function AGG API was selected
due to our prior experience with the AGG tool [Ehri99]. In [Stan04] we
developed and described an extension of the tool with an import and export
function from and to a preliminary version of UsiXML models. Moreover,
the tool was used as a transformation editor and interpreter in [Limb04b] in
order to apply model-to-model transformations for the generation of
graphical and vocal user interfaces. In the current dissertation we extend the
application of transformations to multimodal user interfaces, too. The
scenario of using AGG API to perform model-to-model transformations is
described in [Limb04a] and consists of the following phases (Figure 4-58):
the initial specification of a model along with a set of rules both expressed in
UsiXML are processed by the TransformiXML API. A parsing operation is
applied over the UsiXML elements (models and rules) which are transformed
into AGG objects. The set of rules are applied sequentially to the models in
order to obtain the resultant AGG objects. Further, the objects are parsed
and transformed into UsiXML resultant specification.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 103

Figure 4-58. Model-to-model transformation based on AGG API

• TransformiXML GUI: is a graphical user interface that serves as a front-end

application to the API. The basic flow of tasks with TransformiXML GUI
(Figure 4-59) is the following: after choosing an input file containing models
to transform, the user selects a development path by choosing a starting
point and a destination point (e.g., the viewpoint to obtain at the end of the
process). In the context of our dissertation the starting point is the Task and
Domain Models and the destination is the AUI Model. All the steps and sub-
steps of the chosen path can be visualized in a tree. By clicking on a sub-step
in the tree, a set of transformation systems realizing the chosen sub-step are
displayed. Each transformation system contains a set of rules that can be
visualized in the Transformation rule explorer frame. The designer may also
want to edit the rules either in GrafiXML editor ([Limb04b]) or in AGG
tool. The transformations can be applied either step by step or from one
shot. The result of the transformation is then explicitly saved in a UsiXML
file.

4. A Transformational Method for Producing Multimodal Web User Interfaces

 104

Figure 4-59. TransformiXML – graphical user interface

 TransformiXML tool has been tested successfully on a series of examples, but for
the moment it does not support the automatic application of transformation rules for all the
steps and sub-steps involved in the transformational method. However, the feasibility of the
approach was proved to be successful in model-to-model transformation generated manually
with AGG tool. Figure 4-60 provides an example of a transformation rule applied manually
over the initial Task Model (Figure 4-61) in order to generate the resultant AUI Model (Figure
4-62). The rule is creating AC in which each sub-task of the top-most task in a Task Model
will be executed.

 NAC LHS RHS

Figure 4-60. Generate abstract containers for each sub-task of the top-most task

 Figure 4-61. Initial Model Figure 4-62. Resultant model

4. A Transformational Method for Producing Multimodal Web User Interfaces

 105

4.4.3 GrafiXML
GrafiXML is a tool that is involved in Step 4 of the transformational approach. It

allows designers to import the graphical CUI specification obtained in the previous step and
to export it into XHTML code (Figure 4-63). GrafiXML can also be used to enable the
development of CUI Models by designers. For this purpose a specific editor has been
developed where the designers can draw in direct manipulation any graphical UI by placing
graphicalCIOs and editing their properties in a property sheet. The correspondent UsiXML
specification can be visualized and modified at any moment, while the changes are being
updated immediately into the graphical representation.

Figure 4-63. GrafiXML – export function

 4.4.4 CFB (Communication Flow Builder) Generator
 CFB Generator tool is the MultiXML module that is involved in step 4 of the
transformational approach. It generates XML code corresponding to the Communication
Flow Builder tool [IBM05] file format by applying XSL Transformations over the Concrete
Vocal UI specification of UsiXML.

 4.4.5 XHTML+Voice Generator
 XHTML+Voice Generator tool is a MultiXML module software involved in step 4
of the transformational approach. It generates XHTML+Voice code by applying XSL
Transformations over the multimodal specification of the Concrete UI Model.

4.4.6 Communication Flow Builder
For the vocal UIs we are not generating the VoiceXML code using our own tools,

but we are employing IBM Communication Flow Builder (Figure 4-64), a graphical editor
integrated in IBM Voice Toolkit that allows importing the results of the transformations
applied by CFB Generator tool. Our decision of using a tool that is not one of the modules
of the MultiXML software is sustained by the easy-to-use graphical interface of the editor
that enables users to drag and drop graphical objects to create a communication flow. The

4. A Transformational Method for Producing Multimodal Web User Interfaces

 106

editor also allows designers to generate VoiceXML code from the communication flow
design and to test it in a VoiceXML browser.

 Figure 4-64. Communication Flow Builder editor

4.5 Conclusions

The current chapter introduced a transformational method for the development of
multimodal user interfaces based on an introduced design space composed of design
options. This transformational method will be applied in Chapter 5 on two case studies.

5. Case Studies

 107

CHAPTER 5 CASE STUDIES
 5.1 Introduction

After presenting a transformational method for the development of multimodal user
interfaces based on design options introduced in Chapter 5, the current chapter aims at
assessing the feasibility of the approach on two case studies. Section 5.2 illustrates a case
study which concerns the development of an on-line polling system, while Section 5.3
presents the development of a car rental system. Each case study details the design and
development of different versions of a user interface: monomodal or multimodal (graphical
and vocal). Researches issued from user test [Meri06] conducted to assess the
implementation of a system in monomodal and multimodal versions showed that
multimodal user interfaces are preferred by the users as they ease the interaction with the
system and make the applications more convivial.

 5.2 Case study 1: Virtual Polling System

This case study describes a transformational approach for developing a UI
concerning an opinion polling system aiming at collecting opinions of users regarding a
certain subject. The scenario of this case study (Figure 5-1) is the following: from the Task
and Domain Models, an AUI is produced, from which four CUIs are derived (graphical UI,
vocal UI and two multimodal UIs with graphical and vocal predominance respectively). In
the last step four FUIs are derived corresponding to each CUI obtained in the previous step.

Figure 5-1. Development scenario for virtual polling system case study

5.2.1 Step 1: The Task and Domain Models
The task model, the domain model and the mappings between are graphically

described using IdealXML, an Interface Development Environment for AppLications
specified in UsiXML.

The upper part of Figure 5-2 depicts a CTT representation of the task model
envisioned for the future system. The root task consists of participating to an opinion poll.
In order to do this, the user has to provide the system with personal data like name, zip
code, gender, age category. After that, the user iteratively answers some questions.
Answering a question is composed of a system task showing the title of the question and of
an interactive task consisting in selecting one answer among several proposed ones. Once
the questions are answered, the questionnaire is sent back to its initiator. The bottom part of
Figure 5-2 illustrates the domain model of our UI as produced by a software engineer. The

5. Case Studies

 108

domain model has the appearance of a class diagram and can be described as follow: a
participant participates to a questionnaire, a questionnaire is made of several questions and a
question is attached to a series of answers.

Figure 5-2. Mappings between the Task Model and the Domain Model

The dashed arrows between the two models in Fig. 5-2 depict the mappings

relationships between the elements of the Task and the Domain Model. The sub-tasks of
Insert personal data task is mapped onto the correspondent attributes of Participation
class (name, zipCode, gender and ageCategory). Show question is mapped onto the
attribute title of class Question. The task Select answer is mapped onto the attribute title
of the class Answer. Finally, the task Send questionnaire is mapped onto the method
sendQuestionnaire of the class Questionnaire. Figure 5-3 is a screen shot of the
IdealXML tool showing the graphical editor of the Mapping Model. Each leaf tasks is mapped
on the corresponding attribute or method of the classes contained in the Domain Model.

5. Case Studies

 109

Figure 5-3. Mapping model for the virtual polling system

IdealXML generates automatically the UsiXML specifications for the Task, Domain

and Mapping Models. Figure 5-4 describes the UsiXML specification corresponding to the
Task Model. The first 14 lines describe the hierarchical decomposition of the Task Model,
while lines 15 to 43 describe the relationships between the tasks.

Figure 5-4. Task Model expressed in UsiXML

Figure 5-5 illustrates the Domain Model expressed in UsiXML. Lines 1 to 31 define

the classes that are involved into the class diagram. Lines 9 to 12 describe the attribute

5. Case Studies

 110

“ageCategory” that can have different values expressed under the form of an enumerated
domain (the possible values are “18-35”, “35-45”, “more then 45”). Lines 27 to 30 define a
method with its two parameters, an input parameter and an output parameter. Lines 32 to 44
describe the relationships between the above described classes.

Figure 5-5. Domain Model expressed in UsiXML

Figure 5-6 illustrates the mappings established between the Task Model and the

Domain Model. These mappings are specified in UsiXML with the use of two tags (i.e.,
<source> and <target>) that identify which task will manipulate which attribute/method
from the domain model.

5. Case Studies

 111

Figure 5-6. Mapping Model expressed in UsiXML

5.2.2 Step 2: From Task and Domain Models to AUI Model
The second transformation step involves a transformation system that contains rules

applied in order to realize the transition from the task and domain model to the abstract
model. The rules contained in this transformation system have been designed independently
of the types of concrete UI (i.e., graphical, vocal or multimodal) that will be obtained in the
next step. This step is subdivided into five sub-steps according to [Limb04b]. We are
improving this work by offering the complete set of rules and by adapting them to the needs
of a multimodal UI.

Sub-step 2.1: Rules for the identification of AUI structure
The AUI structure is obtained by applying the rules described in Figures 5-7, 5-8, 5-

9, 5-10 and 5-11. The result of the application of these rules over the task model structure
consists in a hierarchical decomposition of the AUI into abstract containers and abstract
individual components.

 NAC LHS RHS

Figure 5-7. Create an AC for task that has task children

5. Case Studies

 112

NAC LHS RHS

Figure 5-8. Create an AIC for leaf tasks

NAC LHS RHS

Figure 5-9. Iterative tasks are mapped onto repetitive AC

NAC LHS RHS

Figure 5-10. Reconstruct containment relationship between ACs

 NAC LHS RHS

Figure 5-11. Reconstruct containment relationship between ACs and AICs

Sub-step 2.2: Rules for the selection of AICs
Depending on the mappings between the Task Model and the Domain Model, different

facets will be created for the AICs that support the execution of the task. We have redefined
the possible values for the attributes of the facet component as described in Chapter 4.
Accordingly, the following facets will be created:

• Input facet of type create element for the AIC that are assigned to the
execution of the following tasks: create name and create zipCode (Figure
5-12)

• Input facet of type select element for the AIC that are assigned to the
execution of the following tasks: select gender, select ageCategory and
select Answer (Figure 5-13); for each enumerated value of an attribute, a

5. Case Studies

 113

selection value with the same name as the enumerated value, will be attached
to the above created facet (Figure 5-14)

• Output facet of type convey element for the AIC assigned to the task Show
Question Title (Figure 5-15)

• Control facet of type start operation for the AIC dedicated to the task Send
Questionnaire (Figure 5-16)

NAC LHS RHS

Figure 5-12. Create an input facet for AIC executed in tasks of type create

 NAC LHS RHS

Figure 5-13. Create an input facet of type select element when an enumerated value

attribute is encountered

NAC LHS RHS

Figure 5-14. Create selection values for facets of type select for each enumerated value of

an attribute

5. Case Studies

 114

 NAC LHS RHS

Figure 5-15. Create an output facet that conveys an element

NAC LHS RHS

Figure 5-16. Create a control facet of type start operation when a method is manipulated

by a task

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs
For each couple of sister tasks executed into AIOs, we define an abstractAdjacency

relationship between these AIOs. As AIOs can be of two types (i.e., ACs or AICs), there are
four possible combination to take into account. For each combination a specific rule is
considered (Figure 5-17 and Figures B-1, B-2 and B-3 in Annex B).

NAC LHS RHS

Figure 5-17. Creating abstract adjacency for <AIC, AIC> couple

5. Case Studies

 115

Sub-step 2.4: Rules for the definition of abstract dialog control
In a similar way as the previous sub-step, for each couple of sister tasks executed

into AIOs, we define an abstractDialogControl relationship between these AIOs that have
the same semantics as the temporal relationship defined between the tasks. As AIOs can be
of two types (i.e., ACs or AICs), there are four possible combination to take into account.
For each combination a specific rule is considered (Figure 5-18 and Figures B-4, B-5 and B-6
in Annex B).

NAC LHS RHS

Figure 5-18. Deriving Abstract Dialog Control for <AIC, AIC> couple

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings
Figure 5-19 illustrates the rule used to synchronize the AICs with the attribute of an

object from the Domain Model. This synchronization is done through the updates mapping
relationship.

NAC LHS RHS

Figure 5-19. Deriving updates relationships for an AIC

In order to allow the triggering of a method by an AIC, a mapping relationship

of type triggers is generated by the rule described in Figure 5-20.

NAC LHS RHS

Figure 5-20. Deriving trigger relationships for AICs

The UsiXML specification corresponding to the AUI Model can be obtained by

following two different directions:
• Executing the transformation rules according to the above described sub-

steps, which is a machine processable approach

5. Case Studies

 116

• Designing graphically the AUI Model within the TransformiXML tool and
generating the corresponding specification , which makes it a human readable
approach.

As the main objective of UsiXML is to provide first a machine processable language
and then a human readable specification, the AUI Model of the virtual polling system is
obtained by following the first direction. However, we illustrate in Figure 5-21 the
representation of the AUI Model within IdealXML tool.

Figure 5-21 AUI Model of virtual polling system designed in TransformiXML

The resultant UsiXML specification is shown in Figure 5-22. Lines 1 to 34 define the

AIOs of the virtual polling system, while lines 35 to 60 specify the dialog control
relationships between them.

5. Case Studies

 117

Figure 5-22. AUI Model expressed in UsiXML

5.2.3 Step 3: From AUI Model to CUI Model
The third step implies a transformational system that is composed of necessary rules

for realizing the transition from AUI to CUIs. Four CUI are taken into account:
1. Case 1 - graphical UI: the modality used to interact with the system is entirely

graphical (monomodal UI)
2. Case 2- vocal UI: the modality used to interact with the system is entirely vocal

(monomodal UI)

5. Case Studies

 118

3. Case 3 - multimodal UI with graphical predominance: in order to fulfill his
task the user employs the graphical interaction in a higher proportion than the
vocal interaction

4. Case 4 - multimodal UI with vocal predominance: in order to fulfill his task
the user employs the vocal interaction in a higher proportion than the graphical
interaction

Design decisions concerning the type of interaction that is the most suitable for
different tasks in a user interface where assessed by different research studies between which
[Meri06]. These studies show that the graphical interaction is usually preferred by end-users
while visualizing the output data (they have the possibility of rereading them) and submitting
input data. The vocal interaction is mostly used in the case of a precise and short input data,
such as for answering the questionnaire.

For each type of CUI defined above, a transformation system containing specific
rules is designed. In the following it will be emphasized the modularity and the extensibility
of the transformation rules applied in order to obtain the desired CUIs.

Case 1: generation of graphical UI
 Sub-step 3.1: Reification of AC into CC
The rule described in Figure 5-23 creates a GC which will be the main box of the

UI associated to the AC found one level under the root AC in the abstract hierarchy. This
main box is embedded into the main window of the UI.

The rule described in Figure 5-24 creates a GC of type box for each AC contained
into an AC that was reified into a main box.

NAC LHS RHS

Figure 5-23. Creation of windows derived from abstract containment relationship

NAC LHS RHS

Figure 5-24. Generation of graphical containers of type box

Sub-step 3.2: Selection of CICs

The rule illustrated in Figure 5-25 generates a GC of type box that will embed two
GICs: an outputText and an inputText representing respectively the label and the
associated text field. These GICs are used to insert the name and the zipCode. The rule is
applied each time when an AIC with an input facet of type create element is encountered.

5. Case Studies

 119

Figure 5-26 describes the rule applied in order to create a GC of type box that will
embed a group of radio buttons when an input facet of type select element is encountered.
A GIC of type outputText representing the label associated to this group is also created.
The defaultContent of the GIC is the same as the name of the AIC. The radio buttons
associated to this group are created by executing the rule described in Figure 5-27. For each
selection value of a facet of type select, a radio button, that has the same content as the
name of the selection value, is created. These two last rules are used in order to select the
gender of the user, the ageCategory and also his answers to the questions.

 NAC LHS RHS

Figure 5-25. Generation of an outputText and an inputText for AIC with create input

facet

NAC LHS RHS

Figure 5-26. Generation of a graphical container of type box that will contain a group of

radio buttons

 NAC LHS RHS

Figure 5-27. Generation of radioButtons for each selection value of a facet of type select

5. Case Studies

 120

Figure 5-28 presents the rule applied to generate a GC of type outputText, each
time when an output facet of type create is encountered. Thus, the titles of the questions
are created.

NAC LHS RHS

Figure 5-28. Generation of an outputText for an output facet with create action type

In order to generate the button that will allow users to send the questionnaire, rule

presented in Figure 5-29 was designed. The GIC of type button is created when a control
facet of type start operation is encountered.

NAC LHS RHS

Figure 5-29. Generation of a control button

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into graphicalCIOs, we define a
graphicalAdjencency relationship between these graphicalCIOs. As AIOs can be of two
types (i.e., ACs or AICs), there are four possible combination to take into account. For each
combination a specific rule is considered (Figure 5-30 and Figures B-7, B-8 and B-9 in
Annex B).

NAC LHS RHS

Figure 5-30. Generation of Graphical Adjacency relationships for <GIC, GIC> couples

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not exemplified for this case study
as all the components of the virtual polling system are presented into the same window. For
a complete set of rules defining the navigation definition based on design options, please
refer to Section 5.3.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the graphicalCIOs that reify them is realized. As AIOs are of two types (i.e.,
ACs and AICs), four rules describing the four possible combinations are considered (Figure
5-31 and Figures B-10, B-11 and B-12 in Annex B).

5. Case Studies

 121

NAC LHS RHS

Figure 5-31. Generation of Concrete Dialog Control relationships for <GIC, GIC>

couples

 Sub-step 3.6: Derivation of CUI to Domain Relationship
Figure 5-32 illustrates the rule used to map GICs with the corresponding attribute of

an object from the Domain Model. The updates relationship is transposed from the AIC
that is reified by the GIC.

NAC LHS RHS

Figure 5-32. Transposition of update relationship

Figure 5-33 illustrates the rule used to map GICs with the corresponding method of

an object from the Domain Model. The triggers relationship is transposed from the AIC
that is reified by the GIC.

NAC LHS RHS

Figure 5-33. Transposition of triggers relationship

Case 2: generation of vocal UI
 Sub-step 3.1: Reification of AC into CC
The rule described in Figure 5-34 creates a VC of type vocalGroup that will group

all the vocal forms of the vocal application.

NAC LHS RHS

Figure 5-34. Generation of vocal containers

5. Case Studies

 122

Figure 5-35 illustrates the rule applied in order to create a VC of type vocalForm for
each AC contained into the AC that was reified in the rule above by the VC of type
vocalForm.

NAC LHS RHS

Figure 5-35. Generation of vocal containers of type vocalForm

Sub-step 3.2: Selection of CICs

The rule illustrated in Figure 5-36 is designed so as to allow users to introduce there
names. The VC of type vocalForm that is generated contains the following VICs:

• VocalPrompt: the system is inviting the user to utter his name
• VocalInput: the user is uttering his name
• VocalConfirmation (with vocalPrompt and vocalInput): the system is

asking for the confirmation of the recognized input.

NAC LHS RHS

Figure 5-36. Generation of vocal containers of type vocal form that will contain a vocal

prompt, a vocal input and a vocal container of type vocal confirmation

Figure 5-37 illustrates the rule used to create a VC of type vocalMenu containg a

vocalPrompt, a vocalInput and a vocalConfirmation when an input facet of type select is
encountered. The rule allows user to select his gender, his age category and the answers
to the questions. In order to add the corresponding menu items for each selection value of
the facet, the rule described in Figure 5-38 was designed. Each menu item will have as
content the name of the selection value.

5. Case Studies

 123

NAC LHS RHS

Figure 5-37. Generation of vocal containers of type vocal menu when a select facet of an

AIC is found

NAC LHS RHS

Figure 5-38. Generation of vocal menu items for each selection value of AUI with a facet

of type select

In order to announce the beginning of the questionnaire section the rule described
in Figure 5-39 creates a VC of type vocalForm that will contain a VIC of type
vocalPrompt, when an output facet of type convey element is identified.

NAC LHS RHS

Figure 5-39. Generation of a vocalForm that contains a VIC of type vocalPrompt when

an output facet of type convey element is encountered

The rule described in Figure 5-40 is designed in order to allow users to send the

questionnaire and consists of a VC of type vocalForm that contains:
• vocalPrompt: the system asks the user whether he wants to send the

questionnaire or not
• vocalInput: the user is uttering his answer
• vocalConfirmation (with vocalPrompt and vocalInput): the system

solicits a confirmation of the recognized input
The vocal components are created when an output facet of type convey element is identified.

5. Case Studies

 124

NAC LHS RHS

Figure 5-40. Generation of a vocal form that contains the dialog between the system and

the user for the send questionnaire task

Sub-step 3.3: Arrangement of CICs

For each couple of adjacent AIOs that are reified into vocalCIOs, we define a
vocalAdjencency relationship between these vocalCIOs that specify a delay time of 1 second.
As vocalCIOs can be of two types (i.e., GCs or GICs), there are four possible combination
to take into account. For each combination a specific rule is considered (Figure 5-41 and
Figures B-13, B-14 and B-15 in Annex B).

NAC LHS RHS

Figure 5-41. Generation of Vocal Adjacency relationships for <VC, VC> couples

Sub-step 3.4: Navigation definition

The rules that ensure the navigation definition are not used for this case study as all
the components of the virtual polling system are presented into the same vocalGroup. For a
complete set of rules defining the navigation definition based on design options, please refer
to Section 5.3.

Sub-step 3.5: Concrete Dialog Control Definition

For each couple of AIOs with a dialog control relationship, a transposition of this
relationship to the vocalCIOs that reify them is realized. As vocalCIOs are of two types (i.e.,
VCs and VICs), four rules describing the four possible combinations are considered (Figure
5-42 and Figures B-16, B-17 and B-18 in Annex B).
 NAC LHS RHS

Figure 5-42. Generation of Concrete Dialog Control relationships for <VIC, VIC>

couples

Sub-step 3.6: Derivation of CUI to Domain Relationship

Figure 5-43 illustrates the rule used to synchronize VICs with the corresponding
attribute of an object from the Domain Model. The updates relationship is transposed from
the AIC that is reified by the VIC.

5. Case Studies

 125

NAC LHS RHS

Figure 5-43. Transposition of update relationship

Figure 5-44 illustrates the rule used to synchronize VICs with the corresponding

method of an object from the Domain Model. The triggers relationship is transposed from
the AIC that is reified by the VIC.

NAC LHS RHS

Figure 5-44. Transposition of triggers relationship

Case 3: generation of multimodal UI – graphical predominance
This sub-case of our case study generates a multimodal UI where the graphical

interaction is employed in a higher proportion then the vocal one. Thus, only the Answer
question task will support a vocal interaction, the remaining tasks being accomplished using
the graphical modality. In this section we will emphasize the reusability of our
transformational rules. More precisely we will apply some rules designed for Case 1:
generation of graphical UI and for Case 2: generation of vocal UI, to the graphical and
respectively the vocal components that are part of the multimodal UI.

 Sub-step 3.1: Reification of AC into CC
The rule described in Figure 5-45 creates a GC of type window that contains a main

box of the application and a VC of type vocalGroup. Both containers reify the top most
AC of the virtual polling system.

NAC LHS RHS

Figure 5-45. Creation of graphical and vocal top most containers

Figure 5-46 describes the rule that reifies each AC contained into the top most AC in

a GC of type box and a VC of type vocalForm. The VC will be contained into the

5. Case Studies

 126

vocalGroup created in the previous rule, while the GC will be embedded into the main box
of the interface.

NAC LHS RHS

Figure 5-46. Creation of graphical and vocal containers embedded into the top most

containers

Sub-step 3.2: Selection of CICs
 In order to select the appropriated CICs, we apply the same set of rules described in
Case 1 – Sub-step 3.2. The only modifications concerns the rules dedicated to the Answer
question task (graphical interaction ensured by the rules in Figures 5-26 and 5-27 which are
replaced by the rules illustrated in Figures 5-47 and 5-48 designed for multimodal
interaction), respectively. The design options taken into consideration for this task are
described in Table 5-1.

Design option Value CIC
Prompting Graphical (assignment) outputText
Grouping for input Vocal (assignment) vocalInput
Immediate feedback Vocal (assignment) vocalFeedback
Guidance for
immediate feedback

Iconic (assignment) imageComponents (speaker icon)

 Table 5-1. Design option values for Answer question task

The rules that ensure the creation of the CICs according to the design option described
above are detailed in the following. Figure 5-47 generates a VC of type vocalMenu
(announcing the beginning of the questionnaire) that embeds two VICs: a vocalInput
allowing users to input their answers and a vocalFeedback returning the recognized answer.
A GIC of type imageComponent is also generated in order to guide the user with the
feedback modality. Each selectionValue of an input facet of type select is reified by a VIC
of type vocalMenuItem (Figure 5-48). Moreover, the defaultContent attribute of the
vocalMenuItem takes the value of the name attribute of the corresponding selection value.

NAC LHS RHS

Figure 5-47. Creation of a vocalMenu that contains a vocalInput when an input facet of

type select is encountered

5. Case Studies

 127

 NAC LHS RHS

Figure 5-48. Generation of vocalMenuItems for each selection value of an input facet of

type select

Sub-step 3.3: Synchronization of CICs
Due to the fact that the outputText component generated in the previous sub-step

is not a GIC that allows gathering input from the user, no synchronization is necessary with
the VIC of type vocalInput previously generated.

Sub-step 3.4: Arrangement of CICs

Rules illustrated in Figures 5-30, B-7, B-8 and B-9 are used to specify the
arrangement of graphical CICs. For vocal adjacency relationship, Figures 5-41, B-13, B-14
and B-15 describe the rules used to perform the CICs arrangement.

Sub-step 3.5: Navigation definition

No navigation is defined as all the graphical components of the virtual polling system
are presented into the same window and all the vocal components are embedded into the
same vocalGroup.

Sub-step 3.6: Concrete Dialog Control Definition

For graphical components the dialog control is ensured by applying the rules
described in Figures 5-31, B-10, B-11 and B-12, while Figures 5-42, B-16, B-17 and B-18 are
illustrating the rules that define the control of vocal dialog.

Sub-step 3.7: Derivation of CUI to Domain Relationship

In order to synchronize the GICs with attributes and/or methods of classes from the
Domain Model, the rules described in Figures 5-32 and 5-33 are reused. For VICs the reused
rules are illustrated in Figures 5-43 and 5-44.

Case 4: generation of multimodal UI – vocal predominance
This sub-case generates a multimodal UI where the vocal interaction is employed in a

higher proportion then the graphical one. Thus, the Insert name and Send questionnaire
tasks are fulfilled using the graphical interaction, Insert zip code task can be accomplished
employing the graphical or the vocal interaction, while the rest of the tasks (Select gender,
Select age category and Answer question) are available only for vocal interaction.

5. Case Studies

 128

Sub-step 3.1: Reification of AC into CC
The two rules illustrated in Case 3 - Sub-step 3.1 are reused for the reification of AC

into CC (Figures 5-45, 5-46).

 Sub-step 3.2: Selection of CICs
The rules designed in Figures 5-25 and 5-29 are reused in order to allow user to

accomplish graphically the Insert name and Send questionnaire tasks, respectively. For
the Answer question task, the rules illustrated in Figures 5-47 and 5-48 are executed.

Table 5-2 presents the design options and their CICs concretization for the Insert
zip code task for which a multimodal inputText widget is generated.

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalPrompt
Grouping for input Multimodal (equivalence) inputText + vocalInput
Immediate feedback Graphical (assignment) inputText
Guidance for input Iconic (assignment) imageComponents (microphone

icon + keyboard icon)
 Table 5-2. Design option values for multimodal inputText widget

Figure 5-49 we illustrate the rule applied in order to satisfy the design options

described above. For the graphical part of the rule a GC of type box is created that embeds
two GICs: an inputText and an outputText. Moreover, another two GICs of type
imageComponent ensures the guidance concerning the available input modalities. For the
vocal part a VC of type vocalForm is created and embeds two VICs: a vocalPrompt
inviting the user to input the zip code and a vocalInput that will gather the users recognized
answer into the currentValue attribute.

NAC LHS RHS

Figure 5-49. Creation of multimodal inputText with guidance

Table 5-3 presents the design options and their CICs concretization for the Select

gender and Select age category tasks for which multimodal groups of radio buttons are
generated.

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalMenu
Grouping for input Vocal (assignment) vocalInput
Immediate feedback Graphical (assignment) radioButton
Guidance for input Iconic (assignment) imageComponents (microphone

icon)
 Table 5-3. Design option values for multimodal radioButtons

5. Case Studies

 129

Figures 5-50 and 5-51 illustrate the rules applied in order to satisfy the design options
described above. The first rule (Figure 5-50) creates a GC of type box that will embed a
group of multimodal radio buttons when an input facet of type select element is
encountered. For the graphical part of the rule, a GIC of type outputText representing the
label associated to this group is created. The defaultContent of the GIC is the same as the
name of the AIC. For the vocal part of the rule a VC of type vocalMenu will embed a VIC
of type vocalInput that will contain in the currentValue attribute the result of the
recognized input. The radio buttons associated to this group are created by executing the
rule described in Figure 5-51. For each selection value of a facet of type select, two
components will reify it:

• A GIC of type radio button, that has the same defaultContent as the name of
the selection value

• A VIC of type VocalMenuItem, which has the same defaultContent as the name
of the selection value.

 NAC LHS RHS

Figure 5-50. Generation of containers that will embed multimodal radio buttons

 NAC LHS RHS

Figure 5-51. Generation of radioButtons and vocalMenuItems for each selection value of

a facet of type select

Sub-step 3.3: Synchronization of CICs
Rule illustrated in Figure 5-52 creates the synchronization relationship between the

VIC of type vocalInput and GIC of type inputText generated in Figure 5-49. The
synchronization is defined between the currentValue x of the VIC and the currentValue y of
the GIC.

5. Case Studies

 130

NAC LHS RHS

Figure 5-52. Synchronization between a vocalInput and an inputText

Rule illustrated in Figure 5-53 creates the synchronization relationship between the

VIC of type vocalInput and the GC of type box generated in Figure 5-50 and embedding
the group of radio buttons.
 NAC LHS RHS

Figure 5-53. Synchronization between vocalInput and a box that embed a set of radio

buttons

For the following sub-steps the same set of rules are reused as in their Case 3

counterpart:
Sub-step 3.4: Arrangement of CICs
Sub-step 3.5: Navigation definition
Sub-step 3.6: Concrete Dialog Control Definition
Sub-step 3.7: Derivation of CUI to Domain Relationship

5.2.4 Step 4: From CUI Model to FUI
This step consists of transforming each variant of the CUI into its respective FUI

specification. In the following we illustrate the result of the interpretation of the FUIs with
their corresponding browsers. Thus, Figure 5-54 show the resultant graphical UI interpreted
with Internet Explorer browser, while Figures 5-55 and 5-56 present the multimodal UI
interpreted with NetFront multimodal browser for graphical predominant and vocal
predominant UI, respectively. Figure 5-57 is a textual representation of the vocal UI (C=
Computer, U= User).

5. Case Studies

 131

 Fig. 5-54. Graphical UI Fig. 5-55. Multimodal UI –

graphical predominance

 Fig. 5-56. Multimodal UI – Fig. 5-57. Vocal UI

 vocal predominance

5.3 Case study 2: Car Rental System
 The second case study is dedicated to an on-line car rental system that allows user to
select, to search and to pay for a car to rent depending of their preferences. Comparing to
the Virtual polling system, the present case study aims at producing only graphical and
multimodal UIs while still emphasizing their corresponding development design options
presented in Chapter 4.2. A total vocal UI might also be taken into account, but it is out of
the purpose of this section.

The scenario is as follows (Figure 5-58):
• Describe the Task and Domain Models

5. Case Studies

 132

• Generate two AUIs based on the two different values of the sub-task
presentation design option (i.e., separated windows and combined group
boxes)

• For each AUI two CUIs are derived, a graphical one and a multimodal one
• Four FUIs are derived corresponding to each CUI obtained in the previous

step.

Figure 5-58. Development scenario for car rental system

5.3.1 Step 1: The Task and Domain Models

The root task of the Task Model (Figure 5-59) is decomposed into three basic sub-tasks:
1. Determine rental preferences (Figure 5-60): the user has to select a series of

information, such as rental location, expected car features, type of insurance. The
task is iterative and the user can interrupt it at any moment.

2. Determine car (Figure 5-61): the system will launch the search of available cars
depending of the preferences established in the previous sub-task. Based on the
search results, the user will select the car. The task is iterative and the user can
interrupt it at any moment.

3. Provide payment information (Figure 5-62): the user provides a set of personal
information, such as name and card details. Then, the system checks the validity of
the card and finally, the user confirms the payment.

Figure 5-59. Root task decomposition

5. Case Studies

 133

Figure 5-60. The decomposition of Determine rental preferences sub-task

Figure 5-61. The decomposition of Determine car sub-task

Figure 5-62. The decomposition of Provide payment information sub-task

The UsiXML specification corresponding to the Task Model is generated by

IdealXML. Figure 5-63 shows two excerpts: lines 1 to 34 illustrate the hierarchical
decomposition of the tasks, while lines 54 to 73 describe the relationships between the tasks.

5. Case Studies

 134

 ……………………………………………………………………………………………

……………………………………………………………………………………………

Figure 5-63. Excerpts of Task Model expressed in UsiXML

The Domain Model (Figure 5-64) involves 7 classes. Client class describes client’s
characteristics. Car class specifies the features of the car, like car class and type of
transmission. Insurance offers information about the different types of insurances assigned
to each car. RentalInformation class describes the preferences of the client, such as
departure and arrival coordinates, pick up and return dates. Transaction class gathers
information related to a car rental payment. CreditCard provides information about credit
cards, the single payment mean considered in our system. Coordinates is a class used as data
type by RentalInformation and Client classes.

5. Case Studies

 135

Figure5-64. Domain model for the car rental system

Figure 5-65 illustrate two excerpts of the Domain Model expressed in UsiXML

language. Lines 1 to 34 define a part of the classes that are involved into the class diagram,
while lines 74 to 81 describe the adHoc relationship between Car class and
RentalInformation class and between Client class and Car class, respectively.

………………………………………………………………………………………………

5. Case Studies

 136

………………………………………………………………………………………………

Figure5-65. Excerpts of Domain Model expressed in UsiXML

The mappings between the Task Model and the Domain Model are summed-up in
Table 5-4.

Task model Domain model
Select pick-up country (select element) RentalInformation.departure.country
Select pick-up city (select element) RentalInformation.departure.city
Specify day (select element) RentalInformation.pickUpDate.day
Specify month (select element) RentalInformation.pickUpDate.month
Specify year (select element) RentalInformation.pickUpDate.year
Select return country (select element) RentalInformation.arrival.country
Select return city (select element) RentalInformation.arrival.city
Specify return day (select element) RentalInformation.return.day
Specify return month (select element) RentalInformation.return.month
Specify return year (select element) RentalInformation.return .year
Select car class (select element) Car.carClass
Select transmission type (select element) Car.transmissionType
Select insurance type (select element) Insurance.mandatoryInsuranceType
Select optional insurance (select element) Insurance.optionalInsuranceType
Search available cars (start operation) Car.searchCar()
Select car (select element) Return parameter of method Car.searchCar()
Input name (create element) Client.name
Select card type (create element) CreditCard.cardType
Input card number (create element) CreditCard.cardNumber
Specify the month of (select element)
the expiration date

CreditCard.expirationDate.month

Specify the year of (select element)
the expiration date

CreditCard.expirationDate.year

Check card (start operation) CreditCard.checkValidity()
Confirm payment (start operation) Transaction.accomplishTransaction()

Table 5-4. Mappings between task and domain models for the car rental system

 5.3.2 Step 2: From Task and Domain Models to AUI Model
 Case 1: Presentation of the sub-tasks into separated windows
In this first case (T1 in Figure 5-58) we illustrate graph transformation rules applied

on UsiXML models in order to generate a UI where the presentation of the sub-tasks is
separated in three windows. The navigation between the windows is of type sequential and is
concretized in a global placement of the (NEXT, PREV) buttons identified on each window.
The navigation is ensured only by these two logically grouped objects, so the value of the
cardinality is simple.

Sub-step 2.1: Rules for the identification of the AUI structure

We present in this sub-step a series of rules that are designed to be suitable for the
present case study. The rest of the rules (i.e., the rules that reconstruct containment
relationship between ACs and between ACs and AICs) are the same used in the first case

5. Case Studies

 137

study (Figures 5-10 and 5-11). In order to generate an AC for each sub-task of the root task,
rule illustrated in Figure 5-66 is applied. For the each leaf task a corresponding AIC will be
created by applying the rule from Figure 5-8.

 NAC LHS RHS

Figure 5-66. Generate abstract containers for each sub-task of the root task

 The rule presented in Figure 5-67 creates an AC that embeds two AICs which will
reify later the two buttons (Previous, Next) that will ensure the navigation between the ACs.
The rule is applied for each task that disables iterative tasks.
 NAC LHS RHS

Figure 5-67. Create two abstract individual components for task that disable iterative

tasks

Sub-step 2.2: Rules for the selection of the AICs
 Based on the mappings that exist between the Task Model and the Domain Model
different facets will be created for the AICs that support the execution of the tasks. In the
following we present the rules applied to create these facets:

• Input facet of type select element for the AICs (Figures 5-13) assigned to the
following tasks: select country, select city, select day, select month, select year
for pick-up information as well as for return information, select car class, select
transmission type, select insurance type, select optional insurance, select car,
select expiration date of the credit card (month and year); for each enumerated
value of the attribute manipulated by the tasks that is executed into the AIC, a
selection value with the same name as the enumerated value is attached to the above
created facet (Figure 5-14)

• Input facet of type create element for the AICs assigned to the input name and
input card number tasks (Figure 5-12)

• Navigation facet of type start operation for the AICs that ensure the navigation
between the ACs (Figure 5-68)

5. Case Studies

 138

NAC LHS RHS

 Figure 5-68. Create navigation facet for AIC executed in tasks of type start operation

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs

The same set of rules identified in Section 5.2, Sub-step 2.3 will be reused in order to
create abstractAdjancency relationships between AIOs used to execute couple of sister tasks
(Figures 5-17, B-1, B-2 and B-3).

Sub-step 2.4: Rules for the definition of abstract dialog control

For each couple of sister tasks executed into AIOs, an abstractDialogControl
relationship is defined between these AIOs that have the same semantics as the temporal
relationship defined between the tasks. In order to define the abstract dialog control we are
reusing the rules illustrated in Section 5.2, Sub-step 2.4 (Figures 5-18, B-4, B-5 and B-6).

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

Rules described in Section 5.2, Sub-step 2.5 are used to define mapping relationships
of type updates and triggers that allow synchronizing AICs with attributes (Figure 5-19) and
methods (Figure 5-20) from the Domain Model.

Case 2: presentation of the sub-tasks into combined group boxes

In the second case (T2 in Figure 5-58) we illustrate graph transformation rules
applied on UsiXML models in order to generate a UI where the presentation of the sub-
tasks is combined in three group boxes displayed in the same window. The navigation
between the group boxes is of type sequential and is concretized in a global placement of the
(OK, CANCEL) buttons. The navigation is ensured only by these two logically grouped
objects, so the value of the cardinality is simple.

Sub-step 2.1: Rules for the identification of the AUI structure

The generation of the top-most AC is illustrated in Figure 5-69. This AC embeds the
two AICs that will be reified later into the two buttons which will ensure the navigation
(Figure 5-70). For each sub-task of the root task an AC will be generated (Figure 5-71).
These ACs are an abstraction of the groupBoxes that will be further reified from it. In order
to generate the AICs corresponding to each leaf task, rule illustrated in Figure 5-8 is applied.
The rules that reconstruct containment relationship between ACs and between ACs and
AICs are the same used in the first case study (Figures 5-10 and 5-11).

5. Case Studies

 139

 NAC LHS RHS

Figure 5-69. Generate an abstract container for the root task

NAC LHS RHS

Figure 5-70. Generate two abstract individual components implicated later in the

navigation

 NAC LHS RHS

Figure 5-71. Generate abstract containers for each sub-task of the root task

Sub-step 2.2: Rules for the selection of the AICs
The same set of rules identified in Case 1 – Sub-step 2.2 will be applied.

Sub-step 2.3: Rules for spatio-temporal arrangement of AIOs
The same set of rules identified in Section 5.2, Sub-step 2.3 will be reused in order to

create abstractAdjancency relationships between AIOs used to execute couple of sister tasks
(Figures 5-17, B-1, B-2 and B-3).

Sub-step 2.4: Rules for the definition of abstract dialog control

For each couple of sister tasks executed into AIOs, an abstractDialogControl
relationship if defined between these AIOs that have the same semantics as the temporal
relationship between the tasks. In order to define the abstract dialog control we are reusing
the rules illustrated in Section 5.2, Sub-step 2.4 (Figures 5-18, B-4, B-5 and B-6).

Sub-step 2.5: Rules for the derivation of the AUI to domain mappings

Rules described in Section 5.2, Sub-step 2.5 is reused to define mapping relationships
of type updates and triggers that allow synchronizing AICs with attributes (Figure 5-19) and
methods (Figure 5-20) from the Domain Model.

5. Case Studies

 140

5.3.3 Step 3: From AUI Model to CUI Model
For each AUI obtained in the previous step (i.e., Case 1: Presentation of the sub-

tasks into separated windows and Case 2: Presentation of the sub-tasks into combined group
boxes), two sub-cases will be taken into consideration. Thus, four CUIs will be derived in
the current step:

• Sub-case 1.1: graphical CUI presented into separated windows
• Sub-case 1.2: multimodal CUI presented into separated windows
• Sub-case 2.1: graphical CUI presented into combined group boxes
• Sub-case 2.2: multimodal CUI presented into combined group boxes

Sub-case 1.1: graphical CUI presented into separated windows

 The present sub-case (T11 in Figure 5-58) contains transformation rules applied
on the AUI (separated window case) produced in the previous step, in order to generate the
correspondent graphical CUI.

 Sub-step 3.1: reification of AC into CC

Rule illustrated in Figure 5-72 creates two GCs, one of type window and one
of type box for each of the three ACs generated in the previous step. In order to create the
group boxes that will embed later the GICs, rule illustrated in Figure 5-24 is modified so as
the GC of type box becomes a GC of type groupBox.

NAC LHS RHS

Figure 5-72. Create a window and the corresponding main box for each top-level AC

 Sub-step 3.2: Selection of CICs

For the selection of CICs, a series of rules are applied. Table 5-5 shows the rule(s)
applied in order to create GICs that will allow users to fulfill the corresponding task.

Task Rule Rule description
Input name
Input card number

Figure 5-25 When an input facet of type create element is
encountered, generate a GC of type box that will
embed an outputText (the label) and an inputText
(the textfield).

Figure 5-73 When an input facet of type select element is
found, create a GC of type box that will embed two
GICs: an outputText (the label) and a comboBox.

Select pick-up and
return information
(country, city, day,
month, year)
Select card type
Select expiration date
(month, year)

Figure 5-74 For each selection value of an input facet of type
select element, create an item for the previously
generated comboBox for which the value of the
defaultContent attribute will be the same as the
name of the selection value.

5. Case Studies

 141

Figure 5-75

When an input facet of type select element is
found, create a GC of type box that will embed two
GICs: a listBox and an outputText (the associated
label).

Select car

Figure 5-76 For each selection value of an input facet of type
select element, create an item for the previously
generated listBox for which the value of the
defaultContent attribute will be the same as the
name of the selection value.

Figure 5-77 When an input facet of type select element is
found, create a GC of type box that will embed a
GIC of type outputText representing the label
associated to the future group of check boxes.

Select optional
insurance

Figure 5-78 For each selection value of an input facet of type
select element, create a GIC of type checkbox for
which the value of the defaultContent attribute
will be the same as the name of the selection value.

Select car class
Select transmission type

Figure 5-26
Figure 5-27

Generation of a group of radio buttons (See
description in Section 5.2).

Go next/previous

Figure 5-79 When two navigation facets of type start
operation are encountered, two GICs of type
button (corresponding to the Previous and Next
buttons) are generated.

Confirm payment Figure 5-29 Generation of a control button. (See description in
Section 5.2).

Table 5-5. Correspondance between task and rules

NAC LHS RHS

Figure 5-73. Generation of a GC of type box that contains an outputText and a

comboBox

5. Case Studies

 142

NAC LHS RHS

Figure 5-74. Generation of comboBox items for each selection value of a facet of type

select

NAC LHS RHS

Figure 5-75. Generation of a GC of type box that contains an outputText and a listBox

NAC LHS RHS

Figure 5-76. Generation of listBox items for each selection value of a facet of type select

NAC LHS RHS

Figure 5-77. Generation of a GC of type box that contains an outputText

5. Case Studies

 143

 NAC LHS RHS

Figure 5-78. Generation of checkBoxes for each selection value of a facet of type select

 NAC LHS RHS

Figure 5-79. Generation of navigation buttons

Sub-step 3.3: Arrangement of CICs

Rules presented in Figures 5-30, B-7, B-8, B-9 are reused in order to accomplish this
sub-step.

Sub-step 3.4: Navigation definition

For the definition of the navigation we consider the sub-task navigation graphical
design option presented in Section 4.2.1. As our sub-tasks are presented into three separated
windows we have made the choice of a sequential navigation ensured by the Previous
and Next buttons generated in Sub-step 3.2. Figures 5-80 and 5-81 generate the graphical
relationships of type graphicalTransition that endows the Previous and Next buttons
with activation/deactivation power over the adjacent and current GCs, respectively.

NAC LHS RHS

Figure 5-80. Generation of navigation for the “Previous” button

5. Case Studies

 144

NAC LHS RHS

Figure 5-81. Generation of navigation for the “Next” button

Sub-step 3.5: Concrete Dialog Control Definition

The dialog control is ensured by reusing the rules described in Figures 5-31, B-10, B-
11 and B-12.

Sub-step 3.6: Derivation of CUI to Domain Relationship

In order to synchronize the GICs with attributes and/or methods of classes from the
Domain Model, the rules described in Figures 5-32 and 5-33 are reused.

Sub-case 1.2: multimodal CUI presented into separated windows

The present sub-case (T12 in Figure 5-58) contains transformation rules applied on
the AUI (separated window case) produced in the previous step, in order to generate the
correspondent multimodal CUI.

Sub-step 3.1: reification of AC into CC

The rules used to reify ACs into CCs are described in Figures 5-45 and 5-46. Rule
illustrated in Figure 5-45 generates two GC (i.e., the window and the main box of the
application) and a VC of type vocalGroup. In order to create the group boxes that will
embed later the GICs of the UI, rule presented in Figure 5-46 is modified so that the GC of
type box becomes a groupBox, the rest of the rule remaining unchanged.

Sub-step 3.2: Selection of CICs

Based on the multimodal design options defined in Section 4.2.3 we illustrate the rule
applied in order to generate the CICs. For each rule we specify in a corresponding table the
design options that we take into consideration and their associated values.

For each of the following tasks, Select pick-up and return information (country,
city, day, month, year), Select card type, Select expiration date (month, year), we
generate a multimodal comboBox widget to which we associate the design options and their
CICs concretization described in Table 5-6.

5. Case Studies

 145

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalMenu
Grouping for input Multimodal (equivalence) comboBox + vocalInput
Immediate feedback Multimodal (redundancy) comboBox + vocalFeedback
Guidance for input Iconic (assignment) imageComponents (keyboard icon

+microphone icon)
Guidance for
immediate feedback

Iconic (assignment) imageComponents (speaker icon)

 Table 5-6. Design option values for multimodal combobox

The rules that ensure the creation of a multimodal comboBox according to the
above specified design options are described in the following. In Figure 5-82 the rule
generates a GC of type box and a VC of type vocalMenu that embed, respectively:

• Two GICs: a comboBox and an outputText (the label associated to the
comboBox)

• Two VICs: a vocalInput and a vocalFeedback.
The guidance for input is ensured by two GICs of type imageComponent represented with
keyboard and microphone icons, while the guidance for immediate feedback is associated
to the speaker icon. Figure 5-83 describes the rule applied in order to create the multimodal
items of the comboBox. Thus, for each selection value of an input facet of type select
element, two components will reify it: a GIC of type item and a VIC of type
vocalMenuItem.

 NAC LHS RHS

Figure 5-82. Generation of containers that will embed multimodal comboBox items

NAC LHS RHS

Figure 5-83. Generation of comboBox items and vocalMenuItems for each selection

value of a facet of type select

5. Case Studies

 146

For the Select car class, Select transmission type, Select insurance type tasks,
we generate multimodal radioButtons to which we associate the design options and their
CICs concretization described in Table 5-7.

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalMenu
Grouping for input Vocal (assignment) vocalInput
Immediate feedback Graphical (assignment) radioButton
Guidance for input Iconic (assignment) imageComponents (microphone

icon)
 Table 5-7. Design option values for multimodal radioButtons

The rules that ensure the creation of multimodal radioButtons according to the

above specified design options are specified in the following. In Figure 5-84 the rule
generates a GC of type box and a VC of type vocalMenu that embed, repectively a GIC of
type outputText (the label associated to the group of radioButtons) and a VIC of type
vocalInput.
The guidance for input is ensured by a GIC of type imageComponent represented with a
microphone icon. Figure 5-85 describes the rule applied in order to create the
radioButtons. Thus, for each selection value of an input facet of type select element, two
components will reify it: a GIC of type radioButton and a VIC of type vocalMenuItem.
 NAC LHS RHS

Figure 5-84. Generation of containers that will embed multimodal radioButtons

NAC LHS RHS

Figure 5-85. Generation of radioButtons and vocalMenuItems for each selection value of

a facet of type select

For the Select optional insurance task, we generate multimodal checkBoxes to
which we associate the design options and their CICs concretization described in Table 5-8.

5. Case Studies

 147

Design option Value CIC
Prompting Multimodal (redundancy) outputText + vocalMenu
Grouping for input Vocal (assignment) vocalInput
Immediate feedback Graphical (assignment) checkBox
Guidance for input Iconic (assignment) imageComponents (microphone

icon)
 Table 5-8. Design option values for multimodal checkBoxes

The rules that ensure the creation of multimodal checkBoxes according to the

above specified design options are described in the following. In Figure 5-86 the rule
generates a GC of type box and a VC of type vocalMenu that embed, respectively a GIC of
type outputText (the label associated to the group of checkBoxes) and a VIC of type
vocalInput. The guidance for input is ensured by a GIC of type imageComponent
represented with a microphone icon. Figure 5-87 describes the rule applied in order to
create the checkBoxes. Thus, for each selection value of an input facet of type select
element, two components will reify it: a GIC of type checkBox and a VIC of type
vocalMenuItem.

NAC LHS RHS

Figure 5-86. Generation of containers that will embed multimodal checkBoxes

NAC LHS RHS

Figure 5-87. Generation of checkBoxes and vocalMenuItems for each selection value of a

facet of type select

Table 5-9 presents the design options and their CICs concretization for the Select
car task for which we generate a listBox widget.

Design option Value CIC
Prompting Graphical (assignment) outputText
Grouping for input Graphical (assignment) listBox
Immediate feedback Graphical (assignment) listBox
Guidance for input Iconic (assignment) imageComponents (keyboard icon)

 Table 5-9. Design option values for listBox widget

5. Case Studies

 148

In Figure 5-88 the rule generates a GC of type box that embed two GICs: a listBox
and an outputText (the label associated to the listBox). The guidance for input is ensured by
a GIC of type imageComponent represented with a keyboard icon. The rule that creates
the listBox items is the same as in Figure 5-76.

NAC LHS RHS

Figure 5-88. Generation of a listBox

Table 5-10 presents the design options and their CICs concretization for the Input

name, Input card number tasks for which we generate a multimodal inputText widget.
Design option Value CIC

Prompting Multimodal (redundancy) outputText + vocalPrompt
Grouping for input Multimodal (equivalence) inputText + vocalInput
Immediate feedback Graphical (assignement) inputText
Guidance for input Iconic (assignement) imageComponents (keyboard icon +

microphone icon)
 Table 5-10. Design option values for multimodal textInput widget

Rule illustrated in Figure 5-89 generates a GC of type box that embes two GICs: an

inputText and an outputText (the label associated to the inputText). The rule also
generates a VC of type vocalForm that embeds two VICs: a vocalPrompt and a
vocalInput. The guidance for input is ensured by two GICs of type imageComponent
represented with keyboard and microphone icons.

NAC LHS RHS

Figure 5-89. Generation of a multimodal inputText

In order to generate the button that allows users to fulfill Confirm payment task,

we reuse the rule presented in Figure 5-29. For the navigation between the windows we
generate the Next and Previous buttons by applying the rule from Figure 5-79.

5. Case Studies

 149

Sub-step 3.3: Synchronization of CICs
This sub-step is applied in order to ensure the synchronization between vocalCIOs

and graphicalCIOs generated in the previous sub-step. Thus, between the VIC of type
vocalInput and the GIC of type comboBox generated in Figure 5-82, we generate a
synchronization relationship by applying the rule described in Figure 5-90. The
synchronization is defined between the currentValue x of the VIC and the currentValue y of
the GIC.

NAC LHS RHS

Figure 5-90. Synchronization between a vocalInput and a comboBox

Rule illustrated in Figure 5-91 creates the synchronization relationship between the

VIC of type vocalInput and GC of type box (that embed a group of check boxes)
generated in Figure 5-86.

NAC LHS RHS

Figure 5-91. Synchronization between a vocalInput and a box that embed a set of check

boxes

The synchronization relationship between the VIC of type vocalInput and GIC of type
inputText generated in Figure 5-89 is ensured by applying the rule illustrated in Figure 5-52.
For the synchronization relationship between the VIC of type vocalInput and GC of type
box (that embed a group of radio buttons) generated in Figure 5-84 we apply the rule
described in Figure 5-53.

Sub-step 3.4: Arrangement of CICs

Rules illustrated in Figures 5-30, B-7, B-8 and B-9 are used to specify the
arrangement of graphical CICs. For vocal adjacency relationship, Figures 5-41, B-13, B-14
and B-15 described the rules used to perform the CICs arrangement.

5. Case Studies

 150

Sub-step 3.5: Navigation definition
The navigation between the windows is specified by the rules illustrated in Figure 5-

80 and 81 that endow the Previous and Next buttons with activation/deactivation
power over the adjacent/current GC.

Sub-step 3.6: Concrete Dialog Control Definition

For graphical components the dialog control is ensured by applying the rules
described in Figures 5-31, B-10, B-11 and B-12, while Figures 5-42, B-16, B-17 and B-18 are
illustrating the rules that define the control of vocal dialog.

Sub-step 3.7: Derivation of CUI to Domain Relationship

In order to synchronize the GICs with attributes and/or methods of classes from the
Domain Model, the rules described in Figures 5-32 and 5-33 are reused. For VICs the reused
rules are illustrated in Figures 5-43 and 5-44.

Sub-case 2.1: graphical CUI presented into combined group boxes
The present sub-case (T21 in Figure 5-58) contains transformation rules applied on

the AUI (combined group boxes) produced in the previous step, in order to generate the
correspondent graphical CUI.

Sub-step 3.1: reification of AC into CC

The main window of the UI as well as the GC of type box contained in it are
generated as a reification of the top most AC (Figure 5-92). Further, each AC contained into
the top most AC, is reified into a GC of type groupBox (Figure 5-93).

 NAC LHS RHS

Figure 5-92. Create the main window of the UI

NAC LHS RHS

Figure 5-93. Create a group box for each abstract container that belongs to the top-level

abstract container

5. Case Studies

 151

Sub-step 3.2: Selection of CICs
 The same set of rules as in the corresponding sub-step of the Sub-case 1.1 will be
applied. Nevertheless, as the UI elements are combined in group boxes into one single
window, there is no need to generate the navigation buttons. The buttons that allows to
confirm/cancel the payment are generated by applying the rule described in Figure 5-29.

Sub-step 3.3: Arrangement of CICs
Rules presented in Figures 5-30, B-7, B-8, B-9 are reused in order to accomplish this

sub-step.

Sub-step 3.4: Navigation definition

No navigation is defined as all the graphical components of the present sub-case are
presented into the same window and all the vocal components are embedded into the same
vocalGroup.

Sub-step 3.5: Concrete Dialog Control Definition

The dialog control is ensured by reusing the rules described in Figures 5-31, B-10, B-
11 and B-12.

Sub-step 3.6: Derivation of CUI to Domain Relationship

In order to synchronize the GICs with attributes and/or methods of classes from the
Domain Model, the rules described in Figures 5-32 and 5-33 are reused.

Sub-case 2.2: multimodal CUI presented into combined group boxes

The present sub-case (T22 in Figure 5-58) contains transformation rules applied on
the AUI (combined group boxes) produced in the previous step, in order to generate the
correspondent multimodal CUI.

Sub-step 3.1: reification of AC into CC

The rules used to reify ACs into CCs are described in Figures 5-45 and 5-46. By
applying these rules we generate the graphical and vocal top most containers that embed a
GC of type box and a VC of type vocalForm, repectively.

Sub-step 3.2: Selection of CICs

In order to generate the CICs for the present sub-case, we reuse the same design
options values and consequently the same transformation rules described in the
corresponding sub-step of the Sub-case 1.2. However, as the UI elements are combined in
grouped boxes into one single window, we do not apply the rule that generates the
navigation buttons. The buttons that allows to confirm/cancel the payment are generated by
applying the rule described in Figure 5-29.

Sub-step 3.3: Synchronization of CICs
 The synchronization between vocalCIOs and graphicalCIOs is ensured by reusing
the rules illustrated in Sub-step 3.3 of Sub-case 1.2.

5. Case Studies

 152

Sub-step 3.4: Arrangement of CICs
Rules illustrated in Figures 5-30, B-7, B-8 and B-9 are used to specify the

arrangement of graphical CICs. For vocal adjacency relationship, Figures 5-41, B-13, B-14
and B-15 described the rules used to perform the CICs arrangement.

Sub-step 3.5: Navigation definition

No navigation is defined as all the graphical components of the present sub-case are
presented into the same window and all the vocal components are embedded into the same
vocalGroup.

Sub-step 3.6: Concrete Dialog Control Definition

For graphical components the dialog control is ensured by applying the rules
described in Figures 5-31, B-10, B-11 and B-12, while Figures 5-42, B-16, B-17 and B-18 are
illustrating the rules that define the control of vocal dialog.

Sub-step 3.7: Derivation of CUI to Domain Relationship

In order to synchronize the GICs with attributes and/or methods of classes from the
Domain Model, the rules described in Figures 5-32 and 5-33 are reused. For VICs the reused
rules are illustrated in Figures 5-43 and 5-44.

5.3.3 Step 3: From CUI Model to FUI
This step consists of transforming the CUIs obtained in each of the previous Sub-

cases into their corresponding FUI. Thus, once that the specifications for graphical and
multimodal the FUIs is produced, we interpret them with a corresponding browser. Figure
5-94 and 5-95 shows the resultant graphical and multimodal FUIs for the Sub-case 1.1 and
Sub-case 1.2, respectively, for which the sub-tasks are presented in separated windows. For
the Sub-case 2.1 and Sub-case 2.2 that considers both a design option decision for sub-task
presentation in combined grouped boxes, we illustrate the resultant graphical and
multimodal FUIs in Figures 5-96 and 5-97, respectively.

5. Case Studies

 153

Figure 5-94. Graphical FUI presented into separated windows

5. Case Studies

 154

Figure 5-95. Multimodal FUI presented into separated windows

5. Case Studies

 155

Figure 5-96. Graphical FUI presented Figure 5-97. Graphical FUI presented
 into combined group boxes into combined group boxes

5.4 Conclusions
The two case studies presented in this chapter showed the feasibility of our

transformational approach for the development of multimodal web user interfaces based on
the introduced design options.

6. Conclusion

 156

CHAPTER 6 CONCLUSION

Chapter 6 concludes this dissertation by differentiating between the stable knowledge
(Section 6.1) and the knowledge that was acquired but has to be improved and assessed
(Section 6.2). The future work is proposed in Section 6.3.

 6.1 Stable knowledge

Multimodal web applications represent a more natural way of communicating with
machines. Multimodal UIs capitalizing on the efficiency of visual displays and ease of speech
input are overcoming the limitations of current voice browsers and mobile devices. These
interactions will thus enable end-users to speak, write, and type, as well as hear and see using
a more natural UI than today's single mode browsers.

Multimodal web applications are at the crossroad of two types of applications
(Figure 6-1): multimodal applications and web applications. From the set of multimodal web
application developed with languages presented in state of the art (see Section 2.2) we have
selected X+V as a final target language for our transformational approach. Our choice is
motivated by the fact that X+V is an advanced languages for the development of
multimodal web user interfaces based on existing, tested standards, which makes it an
exceptionally powerful markup language that brings a great deal of versatility to the field of
multimodal interface development.

The development of multimodal applications based on X+V language involves a
manual process for the generation of UIs and it does not take into consideration any
methodology based on design options. Our work defines a design space composed of design
options that govern design rules encoded as graph grammars which are automated in order
to ease the development life cycle of multimodal UIs. Our design options cover only a sub-
set of multimodal UIs developed with X+V (see the black circle in Figure 6-1). The rest of
multimodal applications represent the difference between the set of UIs developed manually
with X+V and the set of UIs obtained automatically by employing our method. The design
options cover the properties of three types of web UIs (i.e., graphical, vocal and
multimodal). Each design option is described by a corresponding number of values. A set of
19 design options has been identified (Figure 6-2). Each design option has multiple values.
The number of possible multimodal UIs that can be generated based on design options are
obtained by multiplying the number of values of each design option of the design space. In
theory the total number of user interfaces is 388800.

ij

n

i
i VDUI ⋅=∏

=1
(j=1,…, im)

where,
#UI = number of multimodal UI that can be generated based on design options,

iD = design option i,
n = 19,

ijV =the value j of the iD ,

im = number of values of iD .

6. Conclusion

 157

Figure 6-1. Positioning of Multimodal Web Applications

The advantage of combining design options into a design space is given by the

following three values [Beau00]:
• Descriptive: all design options are documented and allow summarizing any design

in terms of design options values. These values have been identified and defined
based on observation and abstraction of web UIs and by introspection over the
personal knowledge regarding web applications

• Comparative: several different designs of multimodal UIs may be compared
according to the design options in order to assess the design quality in terms of
factors, such as utility, usability, portability, etc.

• Generative: the current design space allows discovering potential new design
option values on a same axis or introducing new axes associated with yet
underexplored design options. This will have a positive impact over the facility of
development and quality ergonomics of multimodal applications.

We propose two objectives concerning the design space:
1. Identification of design values in order to explore different options for the

development of multimodal UIs. Figure 6-2 illustrates the design space
considered in the current dissertation. This design space has 19 dimensions
where each dimension is denoted by a single design option. By combining the
values of different design options we generate a geometrical figure (see the red
dashed line that connects different values in Figure 6-2) that corresponds to a
possible UI. Here the sub-tasks are presented in separate windows between
which we consider a synchronous navigation. The objects that ensure the
navigation (multiple cardinality) are separated from the one (single cardinality)
charged with the control. Both, the objects that ensure the navigation and the
object charged with the control, are placed locally in each window corresponding
to each sub-task.

6. Conclusion

 158

Figure 6-2. Design space for the development of web user interfaces

2. Identification of dependencies between the design options. A design space is

said to be orthogonal if all dimensions are independent of each other. Even if we
would like to define an orthogonal design space this condition is not fulfield as
dependencies between different design options have been identified. So far we
have observed the dependencies illustrated in Table 6-1. The first column
specifies the design option values that create the dependencies and the second
column the design option values determined by the dependency. Consequently,
the total number of user interfaces generated based on our design space (388800)
will decrease.

Design option value causing the
coupling

Coupled design option value

Sub-task presentation = separated Navigation concretization placement =
local

Sub-task presentation = separated Control concretization placement = local
Concretization of navigation & control =
combined

+
Navigation concretization placement =
local

Control concretization placement = local

Concretization of navigation & control =
combined

Navigation concretization placement =
local

6. Conclusion

 159

+
Control concretization placement = local
Concretization of navigation & control =
combined

+
Navigation concretization placement =
global

Control concretization placement =
global

Concretization of navigation & control =
combined

+
Control concretization placement =
global

Navigation concretization placement =
global

Concretization of navigation & control =
combined

+
Navigation concretization cardinality =
multiple

Control concretization cardinality =
multiple

Concretization of navigation & control =
combined

+
Control concretization cardinality =
multiple

Navigation concretization cardinality =
multiple

Grouping for input = graphic (A) Immediate feedback ≠ vocal (A)
Grouping for input = multimodal (E,C,R) Immediate feedback ≠ vocal (A)

Table 6-1. Dependencies between design options

In order to reduce the dependencies between the design options one may consider

decomposing the axes that generate the coupling into sub-dimensions corresponding to the
coupled values, thus obtaining a design space under the form of a snowflake model. For
instance, if we consider the Sub-task presentation as an initial design option (the end-user
usualy choses first the type of the presentation for his interface) and we decompose its
values with those of the Navigation concretization placement and Control concretization
placement, the design space will look like in the Figure 6-3 (for legibility purposes we do not
illustrate in the figure the design options for vocal UIs).

6. Conclusion

 160

Figure 6-3. Design space under the form of a snowflake model

As it can be observed, the design space is not simplifying, on the contrary it becomes

more illisible. Moreover, if we what to reduce the dependencies determined by a group of
two design values (see Table 6-1), the representation under the form of a snowflake model
will be hard to achieve as the space will become practically imposible to percieve. Due to all
these reasons we decided to keep the representation of the design space illustrated in Figure
6-2.

The validation of the current dissertation is achieved by the application of our
method on case studies. Their main goal is to show the feasibility of the method i.e., the
capability to solve the encountered problems. The two case studies show how design options
provide designers with some explicit guidance on what to decide or not for their future user
interface, while exploring various design alternatives for the development of graphical, vocal
and multimodal UIs. In Section 2.4.2 we identified a set of criterions according to which we
analized the limits of the Rush-to-code approach when developing multimoda web user
interafaces. Based on the same criterions Table 6-2 compares the result of the application of
our method on the two cases studies with the results of the Rush-to-code approach.

Criterion Rush-to-code
approach

Model-based
approach

Level of
impact

Completeness No guarantee High guarantee End-user
Consistency No guarentee High guarantee End-user
Correctness No guarantee High guarantee End-user
Guidance No Yes End-user

Coding errors Yes Low probability Programmer

6. Conclusion

 161

Debugging errors Yes Low probability Programmer
Usability errors Yes Low probability End-user

Estimated time for a
first development

Novice user (5 days)
Expert user (2 days)

Novice user (3 days)
Expert user (1/2 day)

Designer

Estimated time for
further modifications

Novice user (1/2 day)
Expert user (a coulpe

of hours)

Novice user (a couple
of hours)

Expert user (1 hour)

Designer

Table 6-2. Comparison between the Rush-to-code approach and Model-based
approach

Our case studies showed the feasibility and the advantages of developing

monomodal and multimodal UIs following a model-based approach which relies on explicit
transformation catalog at any time. The diversity of the UIs that have been developed in the
context of our design space highlights the possibility of manipulating related UIs and paves
the way to consider multiple other alternatives. In particular, new types of UIs can be
developed by refinement (e.g., more elaborated UIs obtained by taking into consideration
more design option values), by composition (e.g., new types of UIs obtained by combining
several existing design option values), by transformation (e.g., new UIs obtained by deriving
existing UIs based on the modifications made over the design option values) or by reusing.
The reuse of the already developed UIs is a consequence of the reuse of transformations that
has been illustrated when transformation systems have been straightforwardly reused from
one case study to another or from one sub-case to another. Thus, we avoid the development
of transformation catalogs that are applied only for a particular case study and consequently
we try to prevent the proliferation of UIs that are close to each other.

In order to support the model-driven approach proposed in the current work for the
development of multimodal web user interfaces we have considered UsiXML, a user
interface descriprtion language. The advantage of our approach consists in the fact that the
conceptual part can be incorporated in other languages like XIML, UIML, etc. However, we
do not have the guarantee that the Consortium which is in charge with the considered
language will take into account our proposition.

The assessment of the characteristics of our methodology is based on a set of
selected criteria, called requirements. These requirements were presented in Section 2.4.2
based on the state of the art of current monomodal/multimodal language. A part of the
requirements were already fulfilled by the UsiXML language [USIX05] which created the
motivation for choosing it as a basis for the extension to multimodal UIs development. The
rest of the requirements are discussed in the following:

Requirement 1. Support for multimodal input: states that our ontology should allow
multiple (i.e., at least two different) input interaction modalities. The current requirement is
motivated by the definition of the multimodal systems (see Section 1.3.4).

Discussion: The current version of UsiXML [USIX06] supports the development of UIs
which allows multimodal input interaction by synchronizing graphical CIOs (see Section
3.2.1) and vocalCIOs (see Section 3.2.2).

6. Conclusion

 162

Requirement 2. Support for multimodal output: states that our ontology should allow
multiple (i.e., at least two different) output interaction modalities. The requirement is
motivated by the definition of the multimodal systems (see Section 1.3.4).

Discussion: The current version of UsiXML [USIX06] supports the development of UIs
which allows multimodal output interaction by synchronizing graphicalCIOs (see Section
3.2.1) and vocalCIOs (see Section 3.2.2).

Requirement 3. CARE properties support for input modalities: states that our ontology
should ensure the support of the CARE properties for input modalities. This requirement is
motivated by the design facilities offered by the CARE properties when defining the
relationships that can occur between input modalities.

Discussion: due to the fact that our target is X+V language (see Section 4.3), Complemenarity
property is not supported neither in input nor in output as it requires data fussion and data
fission, repectively. Fusion and fission of data are not supported by the X+V multimodal
browsers. Thus, our ontology ensures the support for the following properties:

• Assignment: only the involved type of CIO (i.e., the graphicalCIO or the vocalCIO)
will be generated in order to allow the input from the user

• Equivalence: by the introduction of the synchronization relationship (see Section 3.2.4)
which allows synchronizing vocal input with the associated graphical component.

• Redundancy: both, the graphicalCIOs and vocalCIOs will be generated in order to
allow the redundant input of the user

Requirement 4. CARE properties support for output modalities: states that our
ontology should ensure the support of the CARE properties for output modalities. The
current requirement is motivated by the design facilities offered by the CARE properties
when defining the relationships that can occur between output modalities.

Discussion: due to the fact that our target is X+V language (see Section 4.3), Complemenarity
property is not supported neither in input nor in output as it requires data fussion and data
fission, repectively. Fusion and fission of data are not supported by the X+V multimodal
browsers. Thus, our ontology ensures the support for the following properties:

• Assignment: only the involved type of CIO (i.e., the graphicalCIO or the vocalCIO)
will be generated in order to ensure the output of the system

• Redundancy: both types of CIOs (i.e., the graphicalCIO or the vocalCIO) will be
generated in order to ensure the output of the system.

• Redundancy: both, the graphicalCIOs and vocalCIOs will be generated in order to
allow the redundant output of the system

Requirement 5. Approach based on design space: states that our development life cycle
towards a final multimodal web user interface should be supported by a set of design
features. This requirement is motivated by the need to clarify the development process in a
structured way in terms of options, thus requiring less design effort.

Discussion: This requirement is completely fulfilled by the introduction in the development
life cycle of a set of design options for graphical and multimodal UIs (see Section 4.2).

6. Conclusion

 163

Requirement 7. Separation of modalities: states that the concepts and the specifications
corresponding to each modality should be syntactically separated one from each other. The
current requirement is motivated by two aspects: (1) the flexibility in developing applications
due to the fact that the specifications for each modality can be developed separately from the
other modalities specifications and combined them altogether later, (2) reusability of the
specification or part of a specification of a modality in other applications that involve the use
of the same modality.

Discussion: the separation of the concepts and specification corresponding to each modality is
fully achieved and illustrated in Sections 3.2 and 3.3.2, respectively. The synchronization
relationship is employed in order to ensure the synchronization between the involved
modalities when needed.

Requirement 15. Methodological extendibility: refers to the ability left to the designers
to extend the development steps proposed in a methodology. The current requirement is
motivated by the lack of flexibility in the current methodological steps that hinder designers
to add, delete, modify and reuse these steps.

Discussion: [Limb04] identifies the development sub-steps for graphical and vocal UIs. We
reuse these sub-steps for multimodal UIs but we also add a new one in order to logically
support the development process of multimodal UIs i.e., the synchronization between CICs. This
sub-step is ensuring the coordination of vocalCIOs and the graphicalCIOs by generating a
synchronization relationship between them.

 6.2 Knowledge acquired to be improved and assessed

The current dissertation is located in the discipline of Engineering for Human-
Computer Interaction (EHCI). This discipline founds itself at the intersection of two other
disciplines (Figure 6-4): Software engineering (SE) and Human-Computer Interaction (HCI).
SE can be defined as the application of a systematic, disciplined, quantifiable approach to
development, operation, and maintenance of software, more exactly, the application of
engineering to software [IEEE90]. HCI can be defined as a discipline concerned with design,
evaluation and implementation of interactive computing system for human use and with the
study of major phenomena surrounding them [Hewe96].

Cognitive psychology is the psychological science that studies knowledge and the
mental processes that underlie behavior, including decision making, thinking and reasoning.
Cognitive psychology covers a broad range of research domains between which the
discipline of Engineering for Human-Computer Interaction (EHCI). Decision making, as a
feature of the cognitive psychology, plays an important role in the area of EHCI by creating
the context for defining major design options for information systems in order to pave the
way to a structured development life cycle. [Mars87] specifies a set of summary qualitative
principles derived by usability psychologists from cognitive psychology and designed in
order to offer detailed guidance for designers to use during the development process. While
the cognitive psychology offers a support for the usability of the decision making, SE and
HCI published studies for multimodal UI design, a subset of the UIs considered by each of
the two disciplines, are surprisingly rare. Furthermore, there are few ongoing works on
usability of multimodal user interfaces mainly because there are not so many multimodal

6. Conclusion

 164

applications. There have been a number of studies (e.g., [Lars03a]) of the way designers
should conceptualize their multimodal UIs, but these give little insight into the way design
options are formulated or decisions should be actually reached. Thus, the usability of the
design options for multimodal applications still remains an uncovered research area as there
are no usability multimodal applications experiments for this.

Figure 6-4. Positioning MM applications at the crossroad of SE and HCI

The present dissertation is focused on the feasibility of code generation, while the

usability of the UIs is let to be done as an internal validation of the Ph.D. thesis associated to
the present dissertation. It will consist in a study made over the qualitative principles derived
from cognitive psychology and their applicability to the design options for multimodal web
applications presented in the current work.

6.3 Remaining knowledge
There is a lot of work to do around the framework presented in the current

dissertation. In the following we emphasize which are the most important issues for us to
solve in the future work:
• Investigate the implementation of a new transformation engine. The current work

proposes a model-driven approach for developing multimodal web UIs based on a
framework that structures the development life cycle into four levels of abstractions.
Each level relies on corresponding UsiXML meta-models defined in terms of UML class
diagrams (see Section 3.1). Instances of different meta-models ensure different view
points of UIs (e.g., Abstract Models are modality-independent, Concrete Models are toolkit-
independent). In order to pass from one view point to another (e.g., from Abstract Model
considered Source Model to Concrete Model considered Target Model), UsiXML specifies a
Transformation Model (Figure 6-5) which is an instance of the UsiXML Transformation
Meta-Model (see Section 3.1.8). The Transformation Model specifies a set of transformation
rules taken from a transformation catalog (see Section 4.1). The Source Model (e.g.,
Abstract Model) and the Transformation Model are transformed into graph structures.
Further, the Source Graph is submitted to a set of Graph Transformations in order to
generate the Target Graph which is transformed into the Target Model (e.g., Concrete Model).
Finally, the Target Model is checked upon its meta-model.

Model transformation is a relatively unexplored research area. The use of graphical
modeling language and the application of object-oriented metamodeling to language
definition is setting a new context for exploring model transformations. Many new

6. Conclusion

 165

approaches to model-to-model transformation have been proposed, but little experience
is available to asses their effectiveness in practical applications. The available modeling
tools are just starting to offer some model-to-model transformation capabilities, but
these are still very limited and without proper theoretical foundation. An initiative in the
area of model-to-model transformation is the Query/Views/Transformations (QVT)
[QVT05] provided by Object Management Group (OMG) which aims at creating a
standard approach for model transformations in the context of Model Driven
Architecture (MDA) framework. MDA [Mill03] is an OMG standard that tries to
automate the generation of platform-specific models from platform-independent
models. QVT is a language that allows defining transformations between models which
are instances of meta-models described according to Meta-Object Facility (MOF)
specification. MOF specification is an OMG standard that defines an abstract language
and a framework for specifying, constructing, and managing technology neutral
metamodels, such as UML technology. The transformations are also defined according
to a Transformation Model (Figure 6-5) which is an instance of a Transformation Meta-Meta-
Model defined according to MOF specification. Due to the fact that UsiXML Meta-
Models are defined in terms of UML class diagrams and that the framework presented in
the current dissertation has close similarities with the MDA approach, we propose for
the future work to asses the applicability of QVT for UsiXML mode-to-model
transformations. This will suppose that an instance of a Source Meta-Model (e.g., Abstract
Model) is submitted to a set of transformation defined according to the QVT language in
order to generate an instance of the Target Meta-Model (e.g., Concrete Model. The advantage
of this approach is given by the fact that it employs the same development steps and
sub-steps illustrated in the current work, which makes our methodology independent of
the transformation engine.

6. Conclusion

 166

Figure 6-5. Mode-to-model transformations

• Reinforce existing vocal components. The current ontology proposed a basic set of
vocal components in order to prove the feasibility of our approach. For future work we
propose to add new features to the already existing vocal components which will assure
more complete interaction between the end-user and the system.

• Extend the ontology with new vocal components. The current work is based on a set
of vocalCIOs that ensure the basic functionality for vocal and multimodal applications.
In order to ensure the development of more complex types of UIs, new vocal
components have to be considered.

• Design space improvement. We may want to perform the following activities over the
design space introduced in the current work: (1) reduce the semi-dependent dimensions
(2) introduce more values for each design option (3) introduce new dimensions while
maximizing the independency between them.

• Extend transformation catalogs. The transformational approach presented in the
context of this dissertation suffers from an intrinsic incompleteness. We have applied a
series of transformations systems in order to generate different types of UIs (see Section
5), but the same set of rules would not prove to be suitable if the case studies are
modified. For future work we propose to enrich the transformation catalogs with new
transformation system in order to cover more types of UIs.

• Adaptation of multimodal web user interfaces to the context of use. In order to
respond to the modifications of the three parameters considered by the context of use
(i.e., user, platform, environment), we consider for future work the translation from a
source multimodal UI to a target multimodal UI. Thus we will generate
adaptable/adaptive multimodal UIs. This translation may imply changes in the set of the
supported modalities and/or changes in the way the CARE properties are supported.

• Enlargement of multimodal user interface application area. So far we took into
consideration user interafaces where the end-used had to deal with input and output
tasks in form type applications. Other types of applications will be considered in the
future work, such as applicatios that imply multimodal commands for the navigation
over 2D satellite images.

References

 167

REFERENCES

A
[Abra04]

Abrams, M., Helms, J., User Interface Markup Language (UIML) Specification Working
Draft 3.1, 11 March 2004. Available at: http://www.oasis-
open.org/committees/download.php/5937/uiml-core-3.1-draft-01-20040311.pdf

[Agra03]
Agrawal, A., Metamodel Based Model Transformation Language, Proceedings of
OOPSLA’03, October 26 - 30, 2003, Anaheim, California, USA.

[Aneg04]
Anegg, H., Niklfeld, G., et al., Multimodal Interfaces in Mobile Devices – The MONA
Project, Workshop paper for the MobEA II - Emerging Applications for Wireless and
Mobile Access Workshop, New York City, USA, May 18th 2004.

[Anno01]
Anoop K. Sinha, Scott R. Klemmer, Jack Chen, James A. Landay, Cindy Chen,
SUEDE: Iterative, Informal Prototyping for Speech Interfaces.Video poster in Extended
Abstracts of Human Factors in Computing Systems: CHI 2001, Seattle, WA, March
31-April 5, 2001, pp. 203-204.

B
[Bast93]

Bastien, J. M. C., Scapin, D.L., Ergonomic Criteria for the Evaluation of Human-Computer
Interfaces, Institut National de Recherché en Informatique et en Automatique, France,
1993.

[Beau00]
Beaudouin-Lafon, M., Instrumental Interaction: An Interaction Model for Designing Post-
WIMP User Interfaces, Proc. ACM Human Factors in Computing Systems CHI’2000
(The Hague, 1-6 April 2000), ACM Press, New York, 2000, pp. 446-453.

[Bleu04]
Bellik, Y., Teil, D., Les types de multimodalities, 4ème journées sur l’inginierie des
Interface Homme-Machine, Acte IHM, 1992.

[Bleu04]
Bleul, S., Mueller, W., Schaefer, R., Multimodal Dialog Description for Mobile Devices,
Proceedings of the “Developing User Interfaces with XML: Advances on User
Interface Description Languages” Conference, Workshop of the AVI’04, Gallipoli,
Italy, 2004, pp.119-126.

[Bolt80]
Bolt, R.A., Put-that-there: Voice and gesture at the graphics interface, International
Conference on Computer Graphics and Interactive Techniques, Proceedings of the
7th annual conference on Computer graphics and interactive techniques, Seattle,
Washington, United States, pp. 262 – 270, 1980.

[Bouc04a]
Bouchet, J., Nigay, L., Ganille, T., ICARE Software Components for Rapidly Developing
Multimodal Interfaces, Proceedings of the 6th international conference on Multimodal
interfaces, State College, PA, USA , 2004, pp. 251 - 258

References

 168

[Bouc04b]

Bouchet, J., Nigay, ICARE: A Component-Based Approach for the Design and Development
of Multimodal Interfaces, Proceedings of ACM-CHI'04, Extended Abstracts, Vienna,
Austria, April 2004, ACM Press, pp. 1325-1328.

C
[Calv03]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt,
J., A Unifying Reference Framework for Multi-Target User Interfaces. Interacting
with Computers 15(3), June 2003, pp. 289–308.

[Cohe98]
Cohen, P. R., Johnston, M. et al., The Efficiency of Multimodal Interaction: A Case Study,
International Conference on Spoken Language Processing, ICSLP'98, Australia,
1998, pp. 249-252.

[Cole85]
Cole, I., Lansdale, M., Christie, B., Dialogue design guidelines, In B. Christies (Ed.),
Human Factors Of Information Technology In The Office, 1985, Chichester, UK:
Wiley, In Lansdale, M.W., & Ormerod, T.C. (1994) Understanding interfaces: a
handbook of human-computer dialogue, Academic Press, UK.

[Cout92]
Coutaz, J., "Multimedia and Multimodal User Interfaces: A Software Engineering
Perspective", International Workshop on Human Computer Interaction, 1992, St
Petesburg.

[Cout95]
Coutaz, J., Nigay, L., Salber, D, Blanford, A., May, J., Young, R., M., Four easy pieces
for assessing the usability of multimodal interaction: the CARE properties, Proceedings of the
INTERACT'95 conference, S. A. Arnesen & D. Gilmore Eds., Chapman&Hall
Publ., Lillehammer, Norway, June 1995, pp. 115-120

[Czar03]
Czarnecki K., Helsen, S., Clasification of Model Transformation Approaches, in
proceedings of the Workshop on Generative Techniques in the Context of Model-
Driven Architecture, OOPSLA’03.

D
[Dijk76]

Dijkstra, E. W., The discipline of programming, Prentice Hall, Engelwood Cliffs, NJ,
1976.

E
[Ehri99]

Ehrig, H., Engels, G., Kreowski, H-J., Rozenberg, G. (eds.), Handbook of Graph
Grammars and Computing by Graph Transformation, Application, Languages and Tools, Vol. 2,
World Scientific, Singapore, 1999.

References

 169

H
[Hewe96]

Hewett T. T., Baecker R., Carey T., Gasen J., Mantei M., Perlman G., Strong G., and
Verplank W., Curricula for human-computer interaction, Technical Report 608920,
ACM Special Interest Group on Computer-Human Interaction Curriculum
Development, 1996.

[Hoov91]
Hoover, S., Rinderle, J., Models and Abstractions in Design. Design Studies, Volume 12,
Number 4, October, 1991.

I
[IBM05]

IBM, WebSphere Voice Toolkit Getting Started Version 6.0., Second Edition, November, 2005.
Available at:
http://publib.boulder.ibm.com/infocenter/pvcvoice/51x/index.jsp?topic=/com.ib
m.voicetools.callflow.doc/ccfpalette.html

[IEEE90]
 IEEE society, Glossary of Software Engineering Terminology, IEEE Standard

#610.12-1990, IEEE press, 1990.

K
[Kats03]

Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T., XISL :A Language for Describing
Multimodal Interaction Scenarios, Proceedings of the 5th international conference on
Multimodal Interfaces ICMI’03, Vancouver, British Columbia, Canada, 2003,
pp.281-284.

[Kawa03]
Kawamoto, S., Shimodaira, H., Sagayama, S., et al., Galatea: Open-Source Software
for Developing Anthropomorphic Spoken Dialog Agents. Life-Like Characters.
Tools, Affective Functions, and Applications, Helmut Prendinger et al. (Eds.)
Springer, pages 187-212, November 2003.

L
[Lars03a]

Larson, J., A., Commonsense Guidelines for Developing Multimodal User Interfaces, Larson
Technical Services, 3 April, 2003. Available at: http://www.larson-
tech.com/MMGuide.html

[Lars03b]
Larson, J., A., Raman, T., V., Raggett, D., W3C Multimodal Interaction Framework, W3C
Note 6 May 2003. Available at: http://www.w3.org/TR/mmi-framework/

[Limb00]
Limbourg, Q., Vanderdonckt, J., and Souchon, N., The Task-Dialog and Task-Presenta-
tion Mapping Problem: Some Preliminary Results, in F. Paternò, Ph. Palanque (eds.), Proc.
of 7th Int. Workshop on Design, Specification, Verification of Interactive Systems
DSV-IS’2000 (Limerick, 5-6 June 2000), Lecture Notes in Computer Science, Vol.
1946, Springer-Verlag, Berlin, 2000, pp. 227-246.

References

 170

[Limb04a]
 Limbourg, Q., Vanderdonckt, J., Transformational Development of User Interfaces with

Graph Transformations, in Proceedings of the 5th International Conference on
Computer-Aided Design of User Interfaces CADUI’2004, Madeira, January, 14-16,
2004), Kluwer Academics Publishers, Dordrecht, 2004.

[Limb04b]
Limbourg, Q., Multi-Path Development of User Interfaces, PhD thesis, University of
Louvain, November, 2004.

M
[Macl89]

MacLean, A., Young, R., and Moran, T., Design rationale: the argument behind the artifact,
Proc. of the ACM Conf. on Human Aspects in Computing Systems CHI’89 (Austin,
30 April-4 May 1989), ACM Press, New York, 1989, pp. 247-252.

[Maes03]
Maes, S., H., Saraswat, V., Multimodal Interaction Requirements, W3C Note 8 January
2003. Available at: http://www.w3.org/TR/mmi-reqs/#Inputmodalityrequirements

[Mars87]
Marshall C., Nelson C., Gardiner M.M., Design guidelines. In Applying Cognitive Psychology
to User- Interface Design, eds. M. M. Gardiner and B. Christie, Chichester:Wiley & Sons
Ltd, 1987.

[Mart02]
Martin, J.-C., Kipp, M., Annotating and Measuring Multimodal Behaviour - Tycoon Metrics in
the Anvil Tool, Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC'2002), Las Palmas, Canary Islands, Spain, 29-31 may 2002
(Martin_LREC’02.pdf)

[Mart01]
Martin, J.C., Grimard, S., Alexandri, K., On the annotation of the multimodal behavior and
computation of cooperation between modalities, Proceedings of the workshop on
Representing, Annotating, and Evaluating Non-Verbal and Verbal Communicative
Acts to Achieve Contextual Embodied Agents, May 29, 2001, Montreal, in
conjunction with The 5th International Conference on Autonomous Agents. pp 1-7.

[Mart97]
Martin, J. C., TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces,
Intelligence and Multimodality in Multimedia Interfaces, AAAI Press, 1997.

[Mell03]
Mellor S. J., and Clark A. J. (Eds.), Introduction to Model Driven-Development, in IEEE
Software 20(5), 2003, pp. 14-18.

[Meri06]
Merisol, M., Badia, F., Evaluation de la maquette d’un service multimodal de recherché
d’itinéraire dans un reseau de bus, Proceedings of the 18th international conference on
Association Francophone d'Interaction Homme-Machine,Montreal, Canada, pp.
241– 244, 2006.

[Mill03]
Miller, J., Mukerji, J., MDA Guide Version 1.0.1, Available at: http://www.omg.org/

References

 171

[Mont05]
Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P., Lozano, M.D.,
Solving the Mapping Problem in User Interface Design by Seamless Integration in IdealXML,
Proc. of DSV-IS’2005, Springer-Verlag, Berlin, 2005.

[Mori04]
Mori, G., Paternò, F., Santoro, C. , Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions, IEEE Transactions on Software
Engineering, August 2004, pp.507-520

N
[Niel88]
 Nielsen., J., Coordinating user interfaces for consistency, Workshoop held during the

CHI’88, 15-16 May, 1988.
[Niga94]
 Nigay, L., Conception et modélisation Logicielle des Systèmes Interactif :

Application aux Interface Multimodales, Thèse de doctorat, Université Joseph
Fournier, Grenoble, 1994.

[Niga96]
Nigay, L., Coutaz, J., Espaces conceptuels pour l'interaction multimédia et multimodale, TSI,
numéro spécial Multimédia et Collecticiel,Volume 15, N° 9, 1996, AFCET&Hermes
Publ, pp. 1195-1225.

[Niga97a]
Nigay, L., Coutaz, J., A Generic Platform for Addressing the Multimodal Challenge,
Conference on Human Factors in Computing Systems Proceedings of the SIGCHI
conference on Human factors in computing systems, Denver, Colorado, United
States, Pages: 98 – 105, 1995, ISBN:0-201-84705-1.

[Niga97b]
Nigay, L., Coutaz, J., Multifeature Systems: The CARE Properties and Their Impact on
Software Design, 1997, Intelligence and Multimodality in Multimedia Interfaces:
Research and Applications, AAAI Press Publ. CD-ROM et Web. J. Lee Ed, 1997.

[Niga97c]
Nigay, L., Coutaz, J., A design space for multimodal systems: Concurrent processing
and Data fusion, in proceedings of the 12 th BCS conference on Human Computer
Interaction, HCI'97, Springer Verlag.

O
[Ovia99]

Oviatt, S., Ten myths of multimodal interaction, Communications of the ACM,
Volume 42, Issue 11, November 1999, pp.: 74 – 81, ISSN:0001-0782, ACM Press,
New York, USA.

P
[Pala03]

Palanque, Ph. and Schyn, A., A Model-Based Approach for Engineering Multimodal
Interactive, Proc. of 9th IFIP TC13 Int. Conf. on Human-Computer Interaction
Interact'2003 (Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 543-
550.

References

 172

[Pate97]
Paternò F. , Mancini C. , and Meniconi S., ConcurTaskTree: A diagrammatic
notation for specifying task models, in Howard S. , Hammond J. , and Lindgaard G.
(Eds.), Proceedings of IFIP TC 13 International Conference on Human-Computer
Interaction Interact'97 (Sydney, July 14-18, 1997), Kluwer Academic Publishers,
Boston, 1997, pp. 362-369.

 [Puer02a]
Puerta, A., Eisenstein, J., XIML: A Common Representation for Interaction Data,
Sixth International Conference on Intelligent User Interfaces IUI2002, January 13-
16, 2002, San Francisco, USA, ACM Press, pp. 214-215.

[Puer02b]
Puerta, A., Eisenstein, J., XIML: A Universal Language fou User Interfaces, Technical
document, 2002.

[Plomp02]
Plomp, J., Keränen, H., Nikkola, H., Y, Rantakokko, T, Supporting past, present and
future interaction with home appliances, International ITEA Workshop on Virtual Home
Environments, February 20-21, 2002, Paderborn, Germany.

Q
[QVT05]

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Final Adopted
Specification, November, 2005.

R
[Rous05]

Rousseau, C., Bellik, Y., and Vernier, F., Multimodal output specification/simulation
platform, Proc. of 7th Int. Conf. on Multimodal Interfaces ICMI’2005, Trento, 4-6
October 2005, ACM Press, New York, 2005, pp. 84-91.

S
[Scot00]

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem
Aboobaker, and Annie Wang, "SUEDE: A Wizard of Oz Prototyping Tool for Speech User
Interfaces." in CHI Letters, The 13th Annual ACM Symposium on User Interface
Software and Technology: UIST 2000. 2(2): p. 1-10.

[Schy05]
Schyn, A, Une approche fondée sur les modèles pour l’inginérie des systèmes
interactif multimodaux, Thèse de doctorat, Université Toulouse III, 2005.

[Stan05]
Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F., A
Transformational Approach for Multimodal Web User Interfaces based on UsiXML, Proc. of
7th Int. Conf. on Multimodal Interfaces ICMI’2005, Trento, 4-6 October, 2005,
ACM Press, New York, 2005, pp. 259-266.

[Stan06]
Stanciulescu, A., Vanderdonckt, J., Design options for Multimodal Web Applications
Applications, Proc. of 6th International Conference on Computer-Aided

References

 173

Design of User Interfaces CADUI´2006, Bucharest, Romania, 6-8 June, 2006,
Chapter 4, Springer-Verlag, Berlin, 2006, pp. 41-56.

 [Svgo99]
Scalable vector graphics. Overview. Available at:
http://www.adobe.com/svg/overview.html

U
[USIX06]
 UsiXML Consortium, UsiXML, a General Purpose XML Compliant User Interface

Description Language, UsiXML V1.6.4, 1 March 2006. Available at
http://www.usixml.org/index.php?view=page&idpage=6

[USIX05]
 UsiXML Consortium, UsiXML, a General Purpose XML Compliant User Interface

Description Language, UsiXML V1.6.3, 16 June 2005. Available at
http://www.usixml.org/index.php?view=page&idpage=6

V
[Vand01]

Vanderdonckt, J., Bouillon, L., and Souchon, N., “Flexible Reverse Engineering of
Web Pages with Vaquita”, in Proceedings of WCRE'200: IEEE 8th Working
Conference on Reverse Engineering, Stuttgart, October, 2001, IEEE Press.

[Varr02]
Varró, D., Varró, G., and Pataricza, A., Designing the Automatic Transformation of Visual
Languages, in Science of Computer Programming, 44, 2002, pp. 205–227.

[Vand03]
Vanderdonckt, J., Limbourg, Q., Florins, M., Deriving the Navigational Structure of a User
Interface, Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’2003 (Zurich, 1-5 September 2003).

W
 [W3C04a]

W3C consortium, EMMA: Extensible MultiModal Annotation markup language,
W3C Working Draft, 14 December 2004. Available at:
http://www.w3.org/TR/emma/

[W3C04b]
W3C consortium, Voice Extensible Markup Language (VoiceXML) Version 2.0,
W3C Recommendation 16 March 2004. Available at:
http://www.w3.org/TR/voicexml20/

[W3C04c]
W3C consortium, XHTML+Voice Profile 1.2, 16 March 2004. Available at:
http://www.voicexml.org/specs/multimodal/x+v/12/

[W3C01]
W3C consortium, XML Schema Specification, W3C Recommendation, 2 May 2001.
Available at: http://www.w3.org/XML/Schema.html

References

 174

X
[XIML]

XIML and Applications - A Technical Presentation, Available at:
http://www.ximl.org/

Annexes

 175

ANNEX A

LABEL: due to the fact that a label widget does not suppose any input from the user, only
three types of interaction are allowed (i.e., graphical, vocal and multimodal with redundant
output):
• Graphical interaction:
<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Welcome" isUnderlined="true".../>
</box>

• Vocal interaction:
<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL web site".../>
</vocalForm>

• Multimodal interaction with redundant output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalPrompt id="VP1" name="Prompt 1" defaultContent="Welcome to the UCL web site".../>
</vocalForm>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Welcome to the UCL web site"
isUnderlined="true".../>
 <imageComponent id="IC1" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

LABEL + COMBO BOX:
• Graphical interaction:
<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Credit card".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§var"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
</box>

• Vocal interaction:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Select the credit card type. Choose
between"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="VISA"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="MASTERCARD"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="AMERICAN EXPRESS"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="VISA |
MASTERCARD | AMERICAN EXPRESS".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
§myMenuSelection".../>
</vocalMenu>

• Multimodal interaction with graphical assignment for input and redundant

output:
<vocalForm id="VF1" name="Form 1"...>

Annexes

 176

 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected §var".../>
</vocalForm>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Credit card".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§var"...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

• Multimodal interaction with vocal assignment for input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Select the credit card type. Choose
between"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="VISA"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="MASTERCARD"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="AMERICAN EXPRESS"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="VISA |
MASTERCARD | AMERICAN EXPRESS".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
§myMenuSelection".../>
</vocalMenu>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Credit card".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="false" ...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
 <imageComponent id="IC2" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>

• Multimodal interaction with equivalent input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Select the credit card type. Choose
between"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="VISA"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="MASTERCARD"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="AMERICAN EXPRESS"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="VISA |
MASTERCARD | AMERICAN EXPRESS".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
§myMenuSelection".../>
</vocalMenu>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Credit card".../>

Annexes

 177

 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC2" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <comboBox id="CB1" name="Combo 1" isEnabled="true" currentValue="§var" ...>
 <item id="IT1" name="Item 1" defaultContent="VISA".../>
 <item id="IT2" name="Item 2" defaultContent="MASTERCARD".../>
 <item id="IT3" name="Item 3" defaultContent="AMERICAN EXPRESS".../>
 </comboBox>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="CB1"/>
</synchronization>

GROUP OF RADIO BUTTONS:
• Graphical interaction:
<groupBox id="GB1" name="Gender" currentValue="§var"...>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male"
 defaultState="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female"
 defaultState="false" isEnabled="true" ...>
</groupBox>

• Vocal interaction:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please say your gender.Choose
between male and female"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Male"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Female"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Male |
 Female".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

• Multimodal interaction with graphical assignment for input and redundant

output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected §var".../>
</vocalForm>

<groupBox id="GB1" name="Gender" currentValue="§var"...>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male"
 defaultState="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female"
 defaultState="false" isEnabled="true" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

• Multimodal interaction with vocal assignment for input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please say your gender.Choose
between male and female"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Male"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Female"/>

Annexes

 178

 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Male |
 Female".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

<groupBox id="GB1" name="Gender" currentValue="§var"...>
 <imageComponent id="IC2" name="microphone_icon" defaultContent="microphone.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male"
 defaultState="true" isEnabled="false" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female"
 defaultState="false" isEnabled="false" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

• Multimodal interaction with equivalent input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please say your gender.Choose
between male and female"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Male"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Female"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Male |
 Female".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

<groupBox id="GB1" name="Gender" currentValue="§var"...>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC2" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <radioButton id="RB1" name="Radio 1" groupName="Gender" defaultContent="Male"
 defaultState="true" isEnabled="true" ...>
 <radioButton id="RB2" name="Radio 2" groupName="Gender" defaultContent="Female"
 defaultState="false" isEnabled="true" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

GROUP OF CHECK BOXES:
• Graphical interaction:
<groupBox id="GB1" name="Hobbies" currentValue="§var"...>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports"
 defaultState="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel"
 defaultState="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music"
 defaultState="true" isEnabled="true" ...>

Annexes

 179

 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies"
 defaultState="true" isEnabled="true" ...>
</groupBox>

• Vocal interaction:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please select your hobbies. Choose one
or more of the following: sport, travel, music, movies"...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Sports"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Travel"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="Music"/>
 <vocalMenuItem id="VMI4" name="Item4" defaultContent="Movies"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Sports |
 Travel | Music | Movies".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

• Multimodal interaction with graphical assignment for input and redundant

output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected §var".../>
</vocalForm>

<groupBox id="GB1" name="Hobbies" currentValue="§var"...>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports"
 defaultState="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel"
 defaultState="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music"
 defaultState="true" isEnabled="true" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies"
defaultState="true" isEnabled="true" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

• Multimodal interaction with vocal assignment for input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent=" Please select your hobbies. Choose one
or more of the following: sport, travel, music, movies "...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Sports"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Travel"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="Music"/>
 <vocalMenuItem id="VMI4" name="Item4" defaultContent="Movies"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Sports |
Travel | Music | Movies".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
§myMenuSelection".../>
</vocalMenu>

<groupBox id="GB1" name="Hobbies" currentValue="§var"...>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports"
 defaultState="true" isEnabled="false" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel"
 defaultState="false" isEnabled="false" ...>

Annexes

 180

 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music"
 defaultState="true" isEnabled="false" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies"
 defaultState="true" isEnabled="false" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

• Multimodal interaction with equivalent input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent=" Please select your hobbies. Choose one
or more of the following: sport, travel, music, movies "...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Sports"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Travel"/>
 <vocalMenuItem id="VMI3" name="Item3" defaultContent="Music"/>
 <vocalMenuItem id="VMI4" name="Item4" defaultContent="Movies"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Sports |
 Travel | Music | Movies".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

<groupBox id="GB1" name="Hobbies" currentValue="§var"...>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC2" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <checkBox id="CB1" name="Check 1" groupName="Hobbies" defaultContent="Sports"
 defaultState="true" isEnabled="true" ...>
 <checkBox id="CB2" name="Check 2" groupName="Hobbies" defaultContent="Travel"
 defaultState="false" isEnabled="true" ...>
 <checkBox id="CB3" name="Check 3" groupName="Hobbies" defaultContent="Music"
 defaultState="true" isEnabled="true" ...>
 <checkBox id="CB4" name="Check 4" groupName="Hobbies" defaultContent="Movies"
 defaultState="true" isEnabled="true" ...>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</groupBox>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="GB1"/>
</synchronization>

LABEL + LIST BOX:
• Graphical interaction:
<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§var" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
</box>

Annexes

 181

• Vocal interaction:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please select your favorite singers: Chris
Hay, Lee Hardy,..."...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Chris Hay"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Lee Hardy"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Chris Hay
 | Lee Hardy".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

• Multimodal interaction with graphical assignment for input and redundant

output:
<vocalForm id="VF1" name="Form 1"...>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected §var".../>
</vocalMenu>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§var" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

• Multimodal interaction with vocal assignment for input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please select your favorite singers: Chris
Hay, Lee Hardy,..."...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Chris Hay"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Lee Hardy"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Chris Hay
 | Lee Hardy".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="false" currentValue="§var" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

Annexes

 182

• Multimodal interaction with equivalent input and redundant output:
<vocalMenu id="VM1" name="Menu 1" defaultContent="Please select your favorite singers: Chris
Hay, Lee Hardy,..."...>
 <vocalMenuItem id="VMI1" name="Item1" defaultContent="Chris Hay"/>
 <vocalMenuItem id="VMI2" name="Item2" defaultContent="Lee Hardy"/>
 <vocalInput id="VI1" name="Input 1" currentValue="§myMenuSelection" grammar="Chris Hay
 | Lee Hardy".../>
 <vocalFeedback id="F1" name="Feedback 1" defaultContent="Your have selected
 §myMenuSelection".../>
</vocalMenu>

<box id="b1" name="Box 1"...>
 <outputText id="OT1" name="Output 1" defaultContent="Singers".../>
 <imageComponent id="IC1" name="microphone_icon" defaultContent="microphone.jpg".../>
 <imageComponent id="IC2" name="keyboard_icon" defaultContent="keyboard.jpg".../>
 <listBox id="LB1" name="List 1" isEnabled="true" currentValue="§var" ...>
 <item id="IT1" name="Item 1" defaultContent="Chris Hay".../>
 <item id="IT2" name="Item 2" defaultContent="Lee Hardy".../>
 </listBox>
 <imageComponent id="IC3" name="speaker_icon" defaultContent="speaker.jpg".../>
</box>

<synchronization>
 <source sourceId="VI1"/>
 <target targetId="LB1"/>
</synchronization>

Annexes

 183

ANNEX B

NAC LHS RHS

Figure B-1. Creating abstract adjacency for <AC, AIC> couple

NAC LHS RHS

Figure B-2. Creating abstract adjacency for <AIC, AC> couple

NAC LHS RHS

Figure B-3. Creating abstract adjacency for <AC, AC> couple

NAC LHS RHS

Figure B-4. Deriving Abstract Dialog Control for <AC, AIC> couple

NAC LHS RHS

Figure B-5. Deriving Abstract Dialog Control for <AIC, AC> couple

Annexes

 184

NAC LHS RHS

Figure B-6. Deriving Abstract Dialog Control for <AC, AC> couple

NAC LHS RHS

Figure B-7. Generation of Graphical Adjacency relationships for <GC, GIC> couples

NAC LHS RHS

Figure B-8. Generation of Graphical Adjacency relationships for <GC, GC> couples

NAC LHS RHS

Figure B-9. Generation of Graphical Adjacency relationships for <GIC, GC> couples

NAC LHS RHS

Figure B-10. Generation of Concrete Dialog Control relationships for <GC, GIC>

couples

NAC LHS RHS

Figure B-11. Generation of Concrete Dialog Control relationships for <GC, GC> couples

Annexes

 185

 NAC LHS RHS

Figure B-12. Generation of Concrete Dialog Control relationships for <GIC, GC>

couples

NAC LHS RHS

Figure B-13. Generation of Vocal Adjacency relationships for <VC, VIC> couples

NAC LHS RHS

Figure B-14. Generation of Vocal Adjacency relationships for <VIC, VIC> couples

NAC LHS RHS

Figure B-15. Generation of Vocal Adjacency relationships for <VIC, VC> couples

 NAC LHS RHS

Figure B-16. Generation of Concrete Dialog Control relationships for <VC, VIC>

couples

 NAC LHS RHS

Figure B-17. Generation of Concrete Dialog Control relationships for <VC, VC> couples

Annexes

 186

 NAC LHS RHS

Figure B-18. Generation of Concrete Dialog Control relationships for <VIC, VC>

couples

