
The MECANO Project:
Comprehensive and Integrated Support for

Model-Based Interface Development

Angel Puerta
Knowledge Systems Laboratory, MSOB x215, Stanford University, CA 94305-

5479, United States of America
Phone: +1-415-723-5294 – Fax: +1-415-725-7944

E-mail: puerta@camis.stanford.edu
WWW: http://camis.stanford.edu/people/bio/puerta.html

WWW: http://camis.stanford.edu/projects/mecano

Abstract

Model-based interface development works on the following central premise: given
a declarative interface model that defines all the relevant characteristics of a user in-
terface, then comprehensive, automated, user-interface development environments
can be built around such model.

Yet, the high potential of this technology has not been realised because all interface
models built so far are partial representations of interfaces, cannot be readily modi-
fied by developers, are implicitly tied to their associated development environment,
or, importantly, are not publicly available to the HCI community.

The MECANO Project is a research effort that aims to overcome such limitations. It
encompasses two phases: (1) The development of a comprehensive interface
model available as a resource to the HCI community, and (2) the implementation
of a open model-based development environment based on such an interface
model. In this paper, we report on the first phase of the project. We present the
MECANO Interface Model (MIM), and its associated interface modelling language
(MIMIC).

We describe a metalevel paradigm for interface modelling that overcomes prob-
lems of flexibility and completeness. The paradigm is also unique in that it not only
models the user interface but also models explicitly the design process of the inter-
face. This allows the construction of software tools that operate on the design pro-
cess as well as on the interface elements. MIM has been validated via a variety of
paper-based interfaces.

Keywords

Model-based interface development, interface models, user interface design.

20 Computer-Aided Design of User Interfaces

Introduction

The paradigm of model-based interface development has attracted a high degree of
interest in the last few years due to its high potential for producing integrated user
interface development environments with support for all phases of interface design
and implementation.

The basic premise of model-based technology is that interface development can be
fully supported by a generic, declarative model of all characteristics of a user inter-
face, such as its presentation, dialogue, and associated domain, user, and user task
features. As depicted in figure 1, with such model at hand, suites of tools that sup-
port editing and automated manipulation of the model can be built so that compre-
hensive support for design and implementation is possible. Typically, users of
model-based environments (i.e., interface developers) refine the given generic
model into an application-specific interface model using the tools available within
the environment. A runtime system then executes the refined model as a running
interface.

Editors

Design
Exploration

Critics

Automatic
Design

Design
Assistants

Workplace
User

Platform
Behavior

Dialogue

Tasks
Application

Presentation

Workplace
User

Platform
Behavior

Dialogue

Tasks
Application

Presentation

Refinements
Generic

Generated
Interface

Runtime
System

Figure 1. The model-based paradigm. Design tools operate on a generic interface model to produce

an application-specific refined model that is then executed by a runtime system.

The benefits of model-based development are manifold. By centralising interface
information, model-based systems offer support, within a single environment, for
high-level design as well as for low-level implementation details. Global changes,
design visualisation, prototyping, consistency of resulting interfaces, and software
engineering principles in general are much improved over currently available tools,
such as interface builders, which offer only partial and localised development sup-
port. Over the past few years, several model-based systems [Foley91, Johnson95,
Puerta94b, Szekely93, Vanderdonckt93] have demonstrated the feasibility of the
model-based approach.

Despite all the potential shown, model-based technology is struggling to find its
way out of the laboratories. This is due mainly to the absence of one of the key
elements needed by the technology to truly prosper. The two central ingredients
for success in model-based systems are: (1) a declarative, complete, and versatile in-

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 21

terface model that can express a wide variety of interface designs, and (2) a suffi-
ciently ample supply of interface primitives, elements such as push-buttons, win-
dows, or dialogue boxes that a model-based system can treat as black boxes. The
need for the first ingredient is clear: without a vocabulary rich enough to express
most interface designs, the technology is useless.

The second ingredient is also critical because model-based approaches fail if devel-
opers are required to model too low-level details of interface elements—a problem
painfully demonstrated by the erroneous modelling abstraction levels of some early
model-based systems.

Whereas there is little question that good sets of interface primitives are available in
most platforms, researchers have fallen short of producing effective interface mod-
els. The problems with current interface models can be summarised as follows:

• Partial models. Models constructed up-to-date deal only with a portion of the
spectrum of interface characteristics. Thus, there are interface models that em-
phasize user tasks [Johnson95], target domains [Puerta94b], presentation guide-
lines [Vanderdonckt93], or application features [Szekely93]. These models gen-
erally fail when an interface design puts demands on the model beyond the re-
spective emphasis areas.

• Insufficient underlying model. Several model-based systems use modelling paradigms
proven successful in other application areas, but that come up short for inter-
face development. The Entity-Relationship model, highly effective in data mod-
elling, has been applied with limited success in interface modelling [Janssen93,
Vanderdonckt93]. These underlying models typically result in partial interface
models of restricted expressiveness.

• System-dependent models. Many generic interface models are non-declarative and
are embedded implicitly into their associated model-based system, sometimes at
the code level. These generic models are tied to the interface generation schema
of their system, and are therefore unusable in any other environment.

• Inflexible models. Experience with model-based systems suggests that interface
developers many times wish to change, modify, or expand the interface model
associated with a particular model-based environment. However, model-based
systems do not offer facilities for such modifications, nor the interface models
in question are defined in a way that modifications can be easily accomplished.

• Private models. Interested developers or researchers wishing to obtain a generic
interface model from one of the currently available model-based systems,
quickly find that there is no executable version of an interface model that is
publicly available, or even obtainable via a licensing agreement. The inability to
produce an interface model fit for distribution to third parties is one of the ma-
jor shortcomings of model-based technology.

22 Computer-Aided Design of User Interfaces

1 The MECANO Project

To address the limitations described above, we started at the beginning of 1995 The
MECANO Project. This project draws from our own experience building MECANO
[Puerta94b]—a model-based system where interface generation is driven by a
model of an application domain—and from our examination of several model-
based systems built in the past few years. The project encompasses two phases:

• Phase one: The interface model. In this phase, we define a generic interface model
with a high degree of completeness, portability, and independence from a cor-
responding model-based system. The interface model is to be available as a re-
source to the HCI community.

• Phase two: The model-based environment. In this phase, we implement a model-based
environment that supports interface generation based on the phase-one inter-
face model. The system is to embody an open architecture so that third-party
developers can contribute their own tools to the environment simply by adher-
ing to the vocabulary and definitions of the phase-one interface model.

In this paper, we present the results of phase one of The MECANO Project. We
first introduce the interface modelling language MIMIC and explain a metalevel
approach to writing interface models that overcomes problems of completeness
and flexibility in interface models. Subsequent sections describe in detail the
grammar and features of MIMIC. Through an example, we show how the generic
MECANO Interface Model (MIM) is written using MIMIC, and how a specific
sample interface is defined with this language. We conclude by detailing our ap-
proach towards validation of MIMIC and MIM, by examining related and future
work, and by presenting a set of conclusions.

2 A Metalevel Approach to Modelling

The requirements of completeness, flexibility, and system independence of an in-
terface model are very difficult to achieve within a monolithic structure for inter-
face modelling, as is the case with current model-based systems. Even the most
elaborate interface model will run into difficulties if changes or extensions are
needed. Furthermore, the idea that a single generic interface model that can express
most interfaces can be defined is debatable at best, and certainly contrary to experi-
ence gathered with the use of model-based systems.

The key reasons why interface models lack flexibility are first that they were not
designed expressly with the intention of being changed once implemented, and
second, but perhaps more importantly, that they lack an explicit description of the
organisation and structure of the model components. Without such description, it
is difficult to understand the role played in an interface design by the different in-
terface elements being modelled, and it is also hard to visualise the relationships
among those elements. As a consequence, tools cannot be built to support the

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 23

model expansion process, and manual changes are coding exercises usually only ac-
cessible to the original designers of the interface model.

Meta-Level Modeling:
MIMIC

Generic Models:
MIM

Application-Specific
Models

Organization and
Structure

Vocabulary

Interface
Specifications

define

refine into

Figure 2. A multilevel approach to interface modelling. MIMIC defines roles, organisation, and

structure of interface model components. MIM is a generic model whose structure follows the
MIMIC definitions. Interfaces are refined from MIM into application-specific models.

In the MECANO Project, we overcome the various limitations of current interface
models by means of a modelling approach at multiple levels of abstraction, as
shown in figure 2. The result is an interface modelling language, called MIMIC,
that can be used to express both generic and application-specific interface models.
We also provide one generic model called the MECANO Interface Model (MIM).
The MIMIC language follows the following principles:

• Explicit representation of organisation and structure of interface models. MIMIC provides
a metalevel for modelling that assigns specific roles to each interface element,
and that provides the constructs to relate interface elements among themselves.
There is no fixed way to relate elements, so developers are free to build their
own schema (e.g., building a Petri Net of dialogue elements).

• No single generic model. We have discarded the idea that a single, all-encompassing
generic interface model can be built successfully as previously assumed. Instead,
MIMIC supports the definition of generic interface models. We provide one such
generic model in MIM and our model-based system will support that generic
model. However, we envision that developers, and the HCI community in gen-
eral, will produce a number of such generic models, or extensions of generic
models, that are suited for specific user tasks, application domains, or given
platforms.

• Explicit interface design representation. Interface models written with MIMIC will de-
fine not only interface elements, but also characteristics of the design process
for the modelled interface. This is a feature lacking in all previous schema for
interface modelling, but it is a crucial one if we are to give developers access to
and control of the automated processes of interface generation in model-based
systems.

24 Computer-Aided Design of User Interfaces

3 The MIMIC Modelling Language

MIMIC is an object-oriented modelling language that follows the general principles
of C++, and is in fact implemented in C++. Thus, the MIMIC grammar is said to
“bottom-out” on the C++ grammar. Inheritance and typing are similar between
both languages.

3.1 The Sample Interface

Within the confines of this paper, it would be difficult to discuss an example of a
complete interface built with MIMIC and MIM. Therefore, we have opted for pre-
senting a simple, but artificial, domain that can be used to highlight features of
MIMIC and to illustrate the building of interface models with MIM. Our validation
of MIMIC, described in a later section, examined more realistic application do-
mains. The sample interface is shown in figure 3.

The interface controls the firing of a cannon in a ship. The user must load and aim
the cannon using the controls provided. The interface must enforce the restriction
that firing cannot take place until the cannon has been properly loaded and aimed.
The two numeric fields in the interface are used to specify in degrees the rotation
at the base of the cannon (max. 360 degrees), and the firing angle (max. 85 de-
grees).

Figure 3. The ship protection system. Operators can fire a cannon only after it has been properly

loaded and aimed.

3.2 Keys for Reading the MIMIC Grammar

In reading through the example shown in the following sections, a number of con-
ventions must be observed. The BNF grammar is abbreviated to save space and im-
prove readability. In particular, keywords and separators are not detailed, nor are
some of the less interesting categories. The use of some of these should be obvious
from reading the actual interface model. In addition, the following keys should be
noted:

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 25

+ means one or more instances of a category
* means zero or more instances of a category
** means zero or more unique instances of a category

Finally, in our example application-specific interface model, items marked bold
highlight generic MIM-defined elements that are being referenced by the applica-
tion-specific model.

3.3 Top Level Categories

<interface> ::= <interface-definition>*
 <model-component>+
<interface-definition> ::= <interface-attribute> |
 <interface-relation>
<interface-attribute> ::= <attribute>
<interface-relation> ::= <relation>
<model-component> ::= <user-task-model> |
 <domain-model> |
 <presentation-model> |
 <dialog-model> |
 <user-model> |
 <design-model>

An interface is made up of one or more model components. There is no require-
ment for an interface to have all types of model components neither there is a limi-
tation on the maximum number of components of each type that an interface can
have. If an interface has not defined all types of components then it may or may
not be operational. An operational interface is one that can be implemented as a
running program by a runtime system. If an interface has more than one definition
for a type of model component, then it may be operational at any one time with
just one of the defined instances of the particular component type. Allowing multi-
ple model components with the same role is useful when examining what-if scenar-
ios and when dealing with portability. Interface definitions specify attributes and
relations, which we will examine later, that apply to the interface as a whole. For
our example, here is the top-level section of the model:

INTERFACE ship-protection {
 INTERFACE-DEFINITION is-a mecano-interface-model

The interface model is defined as a subclass of the MECANO Interface Model,
MIM, thus inheriting all the attributes and relations defined for that particular ge-
neric model. MIM includes elements that support the 2-D, form- and dialogue-
based interaction that our sample interface requires. Throughout the example, ap-
plied MIM elements are highlighted with bold font.

3.4 Global Categories

There are a number of global categories defined by MIMIC. Many, such as name
and value, should be intuitive to the reader and will not be described. The key global

26 Computer-Aided Design of User Interfaces

categories that deserve the most attention are relations, attributes, and conditions. We
shall see examples of the use of these categories when we examine the model com-
ponents in our example. In this section, we only present the definition of those
categories.

<relation> ::= <relation-definition> |
 <relation-statement>
<relation-definition> ::= <name> |
 <allowed-class>
<relation-statement> ::= <name>
 <object>

A relation is the main mechanism to establish links among the objects defined in
an interface model. A relation definition establishes the nature of a relation between
objects (e.g., an is-a relation). The defined relation is one-to-many and specifies the
classes that can be the target of the relation. Relations are typically defined at the
top level of generic interface models, or at the top level of the components of ge-
neric models. The scope of a relation is limited to the class where it is defined and
to any children of that class. In contrast to a definition, a relation statement applies a
defined relation to existing objects.

<attribute> ::= <attribute-definition> |
 <attribute-value>
<attribute-definition> ::= <name>
 <value-definition>
 <attribute-feature>**
<value-definition> ::= <value-type>
 <canonical-form>
 <allowed-values>*
 <default-value>
<attribute-feature> ::= <feature-definition> |
 <feature-value>
<feature-definition> ::= <name>
 <value-definition>

An attribute is a characteristic, or property associated with a class or object in an
interface model. An attribute definition establishes the type and features of an at-
tribute in an interface model. Attributes are typically defined at the top level of ge-
neric interface models, or at the top level of the components of generic models.
The scope of an attribute is limited to the class where it is defined and to any chil-
dren of that class. Attributes can have attribute-specific features that are similar in
nature to regular attributes, but that do not allow the definition of additional fea-
tures within the feature itself. An attribute value assigns the values of a defined at-
tribute and the values of that attribute’s features.

<condition> ::= <precondition> |
 <postcondition> |
 <initial-condition>

A condition is a Boolean expression that has a temporal quality. Conditions are
used to specify the applicability at any given time of an activity, such as a user task

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 27

or a command, or to specify the state of such activity. A precondition must be sat-
isfied before an activity can be undertaken. A postcondition is satisfied after an ac-
tivity has been completed. An initial condition is satisfied as soon as an activity is
started.

3.5 The User-Task Model Component

<user-task-model> ::= <name>
 <user-task-definition>*
 <user-task>+
<user-task-definition> ::= <task-attribute> |
 <task-relation>
<user-task> ::= <name>
 <task-relation>*
 <goal>
 <subtask>*
 <execution-order>
 <condition>*
 <task-attribute>**
<subtask> ::= <user-task>

A user-task model is a collection of hierarchically-ordered user tasks. A user task is
a definition of an activity that a user desires to perform. A task has a final purpose,
or goal (a Boolean expression), and may be decomposable into several subtasks.
The subtasks are performed according to an execution order under given condi-
tions. Note that the semantics of the hierarchy built with this model component
are left to the interface developer. Thus, the hierarchy of user tasks may constitute
a GOMS model, or it may constitute some type of activity graph. The user task
model for our example is as follows:

USER-TASK-MODEL protection-tasks{
 USER-TASK-DEFINITION
 is-a mecano-user-task-model
 USER-TASK ProtectShip {
 GOAL (fire-cannon TRUE)
 SUBTASK (load-cannon aim-cannon fire-cannon)
 EXECUTION-ORDER sequence}
 USER-TASK load-cannon {
 GOAL (load-cannon TRUE)}
 USER-TASK aim-cannon {
 GOAL (aim-cannon TRUE)}
 USER-TASK fire-cannon {
 GOAL (fire-cannon TRUE)
 PRECONDITION
 (load-cannon == TRUE && aim-cannon == TRUE)
 POSTCONDITION (load-cannon == FALSE) }}

The task of firing the cannon is decomposed into three subtasks that should be
executed in sequence. Note, however, that the developer has chosen not to enforce
the sequence in full by not specifying any conditions for the subtask aim-cannon.
Thus, the model actually allows users to aim first and then load the cannon.

28 Computer-Aided Design of User Interfaces

3.6 The Domain Model Component

<domain-model> ::= <name>
 <domain-definition>*
 <domain-object>+
<domain-definition> ::= <domain-attribute> |
 <domain-relation>
<domain-object> ::= <name>
 <domain-relation>*
 <domain-attribute>**

A domain model is a collection of hierarchically-ordered domain objects that de-
fine all the objects in a domain along with their relationships. A domain object
represents any entity in a given domain. Domain objects are characterised through
domain-specific relations and attributes. Here is the domain model for our exam-
ple:

DOMAIN-MODEL ship-cannon-system {
 DOMAIN-DEFINITION is-a mecano-domain-model
 DOMAIN-OBJECT cannon {
 DOMAIN-ATTRIBUTE load-state {
 TYPE BOOLEAN
 ALLOWED-VALUES (loaded empty)
 DEFAULT-VALUE empty}}
 DOMAIN-OBJECT aim-coordinates {
 DOMAIN-ATTRIBUTE base-rotation {
 TYPE FLOAT
 ATTRIBUTE-FEATURE range (0 360)}
 DOMAIN-ATTRIBUTE firing-angle {
 TYPE FLOAT
 ATTRIBUTE-FEATURE range (0 85)}}}

The domain model defines the relevant objects of the domain. The range attribute
is defined in the Mecano Interface Model from which this model inherits attrib-
utes.

3.7 The Presentation Model Component

<presentation-model> ::= <name>
 <presentation-definition>*
 <presentation-element>+
<presentation-definition> ::= <presentation-attribute> |
 <presentation-relation>
<presentation-element> ::= <name>
 <presentation-relation>*
 <presentation-attribute>**

A presentation model is a collection of hierarchically-ordered presentation ele-
ments. A presentation element represents any entity associated with an interface
presentation, such as windows, displays, buttons, and other widgets. Presentation
elements can be either abstract or concrete as defined by the interface designer.
Abstract presentation elements are useful when dealing with portability issues.

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 29

Presentation elements are characterised through presentation-specific relations and
attributes. The presentation model also defines the characteristics of a presentation,
such as layout and general guideline styles. A partial view of the presentation model
for our example follows:

PRESENTATION-MODEL cannon-presentation {
 PRESENTATION-DEFINITION
 is-a mecano-presentation-model
 PRESENTATION-DEFINITION follows-style normal
 PRESENTATION-DEFINITION
 uses-medium (windows95 vdt)
 PRESENTATION-DEFINITION uses-mode graphical
 PRESENTATION-ELEMENT application-window {
 PRESENTATION-RELATION is-a window
 PRESENTATION-ATTRIBUTE type dialog
 PRESENTATION-ATTRIBUTE
 title “Ship Protection System”
 PRESENTATION-ATTRIBUTE font MS-Sans-Serif-8
 PRESENTATION-ATTRIBUTE border 2
 PRESENTATION-ATTRIBUTE dimensions (200 150)
 PRESENTATION-ATTRIBUTE is-resizable NO}
 PRESENTATION-ELEMENT fire-button {
 PRESENTATION-RELATION is-a push-button
 PRESENTATION-RELATION
 align-horizontal load-button
 PRESENTATION-RELATION
 belongs-to application-window
 PRESENTATION-ATTRIBUTE font MS-Sans-Serif-8
 PRESENTATION-ATTRIBUTE label “Fire Cannon”
 PRESENTATION-ATTRIBUTE dimensions (40 20)}}

The sample presentation model defines a GUI in Windows95. Note the heavy use
of MIM elements in the presentation model (noted in bold), a level of use that
should be typical in most interfaces. Each element of the interface is defined via at-
tributes and relations. Note that some elements have an absolute window position
while others are positioned via alignment relations. This keeps in line with the gen-
eral philosophy of model-based systems where designers work at higher levels of
abstraction by means of primitives. In this case, developers avoid working at the
layout level of grids and guidelines.

3.8 The Dialogue Model Component

<dialog-model> ::= <name>
 <dialog-definition>*
 <command>+
<dialog-definition> ::= <dialog-attribute> |
 <dialog-relation>
<command> ::= <name>
 <dialog-relation>*
 <goal>
 <subcommand>*

30 Computer-Aided Design of User Interfaces

 <execution-order>
 <interaction-technique>+
 <response>*
 <condition>*
 <dialog-attribute>**
<sub-command> ::= <command>
<interaction-technique> ::= <relation>
<response> ::= <initial-response> |
 <final-response>
<initial-response> ::= <relation>
<final-response> ::= <relation>

A dialogue model is a collection of hierarchically-ordered user-initiated commands
that define the procedural characteristics of the human-computer dialogue in an in-
terface model. A command is a definition of a user-initiated activity that a user de-
sires to perform. A command has a final purpose, or goal (a Boolean expression of
arbitrary complexity), and may be decomposable into several subcommands. The
subcommands are performed according to an execution order under given condi-
tions.

Commands are executed via interaction techniques and may produce one or more
system responses. An interaction technique is a special class of relation that links
an existing command with a specific technique for interaction that is carried out via
one or more presentation elements. Thus, performing an interaction technique,
such as a mouse click, on a presentation element, such as a push button, is equiva-
lent to executing the command within which such interaction technique is speci-
fied.

A response is another special class of relation that defines a system reaction to a
user action. Responses have a temporal element that determines at what point dur-
ing the execution of a command the responses take place. An initial response oc-
curs immediately after its corresponding command is initiated. A final response oc-
curs immediately after its corresponding command is completed satisfactorily (i.e.,
the command goal has been achieved).

As with user tasks, the semantics of the hierarchy of commands are left to the de-
signer who can work with a number of dialogue description schema by using the
dialogue model component. The following is the dialogue model for our example.

 DIALOG-MODEL ship-protection-dialog {
 DIALOG-DEFINITION is-a mecano-dialog-model
 COMMAND launch-application {
 GOAL (fire-cannon TRUE)
 SUBCOMMAND (load-canon aim-cannon fire-cannon)
 EXECUTION-ORDER sequence
 INITIAL-RESPONSE disable fire-button
 FINAL-RESPONSE disable fire-button
 INITIAL-CONDITION (load-cannon == FALSE)
 INITIAL-CONDITION (aim-cannon == FALSE)
 INITIAL-CONDITION (fire-cannon == FALSE)
 POSTCONDITION (load-cannon == FALSE)

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 31

 POSTCONDITION (aim-cannon == FALSE)}
 COMMAND load-cannon {
 GOAL (load-cannon TRUE)
 INTERACTION-TECHNIQUE
 left-mouse-click load-button}
 COMMAND aim-cannon {
 GOAL (aim-cannon TRUE)
 INTERACTION-TECHNIQUE edit-float
 (base-rotation-editbox firing-angle-editbox)
 FINAL-RESPONSE enable fire-button}
 COMMAND fire-cannon {
 GOAL (fire-cannon TRUE)
 INTERACTION-TECHNIQUE
 left-mouse-click fire-button
 FINAL-RESPONSE disable fire-button
 PRECONDITION
 (load-cannon == TRUE && aim-cannon == TRUE)
 POSTCONDITION (load-cannon == FALSE)
 POSTCONDITION (aim-cannon == FALSE)}}}

The dialogue model follows closely the user task model. Note that whereas the re-
quirement that the cannon not be fired until is loaded and aimed is enforced using
enabling and disabling of buttons, the sequence of “load-cannon” before “aim-
cannon” is not actually enforced by any system response or interaction technique.

The parallelism between user-task models and dialogue models in MIMIC is not
coincidental. We consider the user-task model the driving paradigm for the interac-
tion dialogue and expect that automated tools in our model-based system will ex-
ploit such parallelism.

3.9 The Design Model Component

Although the model components shown so far in our example seem to capture a
full description of the interface, there is in fact a wealth of information that re-
mains implicit in those components and that is crucial if we desire to automate the
refinement of interface models.

For example, why were push buttons used to operate the cannon? What is the
connection between user tasks, domain objects, and presentation elements? These
and many other similar questions are integral part of an interface design, yet inter-
face models have failed to capture it. The design model component in MIMIC is
used for exactly that purpose.

<design-model> ::= <name>
 <design-definition>*
 <design-mapping>+
<design-definition> ::= <dialog-attribute> |
 <dialog-relation>
<design-mapping> ::= <relation>

<mapping-condition>*

32 Computer-Aided Design of User Interfaces

A design model is an unordered collection of design mappings. The mappings es-
tablish design relationships among interface objects. The applicability of a mapping
may be subject to a number of mapping conditions (Boolean expressions). Here is
a partial view of the design model for our example:

 DESIGN-MODEL ship-protection-design {
 DESIGN-DEFINITION is-a mecano-design-model
 DESIGN-MAPPING presentation-assignment
 (FLOAT editbox)
 DESIGN-MAPPING presentation-assignment (BOOLEAN push-button)
 DESIGN-MAPPING task-domain-link
 (load-cannon cannon.load-state)
 DESIGN-MAPPING task-domain-link
 (fire-cannon cannon.load-state)}

This view shows that two different user tasks need access to the same attribute in
the domain object. As a consequence, two interface elements are made available to
the user to perform those tasks. The interface elements are push buttons as deter-
mined by the presentation assignment of the type FLOAT of the load state of a
cannon. When modifying designs, developers often change not interface elements
per se but rather the rationale for the existence of those elements. Thus, if a devel-
oper does not wish to use push buttons in the ship protection interface, it may be
more appropriate to operate on the design model to change the presentation as-
signments than on the presentation model itself.

3.10 The User Model Component

<user-model> ::= <name>
 <user-definition>*
 <user>+
<user-definition> ::= <user-attribute> |
 <user-relation>
<user> ::= <name>
 <user-attribute>**
 <user-relation>*

A user model is a collection of hierarchically-ordered users. A user is a description
of the characteristics of an individual user or of those of a stereotype of a user
group. The user model is not intended to be a description of the mental state of a
user. Our example does not have a user model component.

4 Model Validation

To validate the MIMIC modelling approach, and to refine MIM, we conducted a
process of writing a variety of application-specific interface models. We aimed
more at breadth than at volume of interfaces examined. Both members of our
group and outside contributors were given the MIMIC language specifications
along with a current version of MIM, and were asked to write an application-
specific model of their choice based on an existing interface. Examples worked out

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 33

ranged widely in size from toy domains as the one shown here, to subsets of
commercial applications such as Microsoft Word and Netscape Navigator.

While some developers had trouble initially with the semantics of MIMIC, most
changes in the long run were accommodated by modifying, or extending, MIM.
Typically, developers would find the need to define relations or attributes at the
application-specific level that we would later on incorporate into MIM. Yet, in
other instances, developers would suggest defining MIM relations in a different
way from what was being provided. This experience solidifies our belief that multi-
ple generic interface models (i.e., multiple MIM) will be necessary eventually. Dur-
ing the next phase of The MECANO Project, we expect to continue the validation
process, this time from a software-supported, as opposed to manual, point of view.

5 Implementation Issues: Automating Model Building

In the second phase of The Mecano Project, we implement a model-based envi-
ronment, called Model-Based Interface Designer (Mobi-D), that supports interface
generation based on the phase-one interface model. The main components of
Mobi-D can be seen in figure 4. The system has three main features:

• User-centred interface development in an integrated and comprehensive environment. Devel-
opers build interfaces manipulating abstract objects such as user tasks and do-
main objects. The production of presentation styles and dialogues is automated
in most part by the environment.

• Transparent modelling language. Developers do not need to know the MIMIC mod-
elling language, just the roles of the different components of an interface
model. The environment tools provide the interactive functionality needed to
complete model editing operations without having to read or write in the
MIMIC language.

• Open architecture. Third-party developers can enhance the environment by incor-
porating their own design tools. Such tools need only to adhere to the MIMIC
language. This feature is key in supporting machine-learning and other tech-
niques for user-task automation.

34 Computer-Aided Design of User Interfaces

Interface
Model

Interface
Model

Model Editing
Tool

Model Refinement
Tool

Interface Preview
ToolRun-Time System

1 2

3
4

Figure 4. The Mobi-D development environment.

6 Related Work

There are a number of model-based systems that have been developed over the
past few years. In general, they all suffer from the limitations outlined in the intro-
duction to this paper. We will highlight here their contributions more than their
shortcomings. In general, interface models mentioned here are subsets of MIMIC,
do not support explicit design layers, and do not separate levels of abstraction as
MIMIC does.

ADEPT [Johnson95] drives interface generation entirely from models of the user
tasks. It applies a multistep refinement process that methodically links tasks to ab-
stract interface elements, then to concrete interface elements that can be assembled
into a running interface. Interfaces generated by ADEPT have a high degree of
portability thanks to the use of abstract interface elements. Another successful
task-based system is TRIDENT [Vanderdonckt93] which has an excellent knowl-
edge base of design guidelines that are consistently applied during interface genera-
tion. Parts of the TRIDENT interface model are based on the ERA paradigm, on
which the GENIUS system is based as well [Janssen93]. GENIUS, however, does not
define an interface model but rather models certain dialogue and data elements for
interface generation purposes.

UIDE [Foley91] provided one of the earliest attempts at building an interface
model. The model was mainly a presentation component augmented by data and
dialogue constructs. The system demonstrated the high potential for the automa-
tion of interface generation from models.

A related system is HUMANOID [Szekely93] which builds interfaces around applica-
tion models and makes use of pre-defined presentation templates to solve layout
generation problems. Both of these systems are now being combined into a new
generation system called MASTERMIND [Neches93].

MASTERMIND shares some of the goals of The MECANO Project and will certainly
overcome many of the problems of its predecessors. We believe, however, that its

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 35

associated interface model and modelling language [Szekely95], built as a single, all-
encompassing structure, will suffer from similar limitations to those outlined at the
beginning of this paper.

ITS [Wiecha90] has been used successfully at the commercial level. Its approach is
particular in the sense that it supports team development, and that it takes an or-
ganised view at the use of rules for interface generation.

Conclusion

We have presented a modelling approach for user interfaces that overcomes many
of the limitations of previous approaches in model-based systems. We implement a
metalevel paradigm for interface model building with a top level that defines the
organisation and structure of interface models, a generic level that defines the vo-
cabulary for model building via generic interface models, and an application-
specific layer where interfaces are modelled.

We introduced the MIMIC modelling language for interfaces, and the generic Me-
cano Interface Model, MIM. MIMIC includes as one of its interface roles, a design
model component that explicitly states the relationships among the different ele-
ments of an interface.

We have validated our modelling approach by writing a variety of interfaces in
MIMIC with the support of MIM. The modelling language is to be supported
transparently by a model-based development environment, called Mobi-D, featur-
ing an open architecture.

Acknowledgements

Special thanks to David Maulsby who provided extensive commentary on this pa-
per. Our thanks to all the reviewers for their thoughtful comments. This work was
supported by the US Government under the Defense Advanced Research Program
Agency (DARPA).

References

[Foley91] Foley, J.D., Kim, W.C., Kovacevic, S., Murray, K., UIDE - An Intelligent
User Interface Design Environment, in « Intelligent User Interfaces », J.W. Sullivan, S.W.
Tyler (Eds.), Addison Wesley, ACM Press, 1991, pp. 339-384.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from
Data Models and Dialogue Net Specifications, in Proceedings of the Conference on
Human Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds »
(Amsterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollna-
gel, T. White (Eds.), ACM Press, New York, 1993, pp. 418-423.

36 Computer-Aided Design of User Interfaces

[Johnson95] Johnson, P., Johnson, H., Wilson, S., Rapid Prototyping of User Interfaces
Driven by Task Models, in « Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development », J. Carroll (Ed.), John Wiley & Sons, London, 1995,
pp. 209-246.

[Neches93] Neches, R., Foley, J.D., Szekely, P., Sukaviriya, P., Luo, P., Kovacevic,
S., Hudson, S., Knowledgeable Development Environments Using Shared Design Models, in
Proceedings of ACM/AAAI International Workshop on Intelligent User Interfaces
(Orlando, 6-9 January 1993), ACM Press, New York. http://www.isi.edu/
isd/ii93.ps

[Puerta94b] Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A., Beyond Data
Models for Automated User Interface Generation, in Proceedings of British Conference
on Human-Computer Interaction HCI’94 « People and Computers IX » (Glasgow,
23-26 August 1994), G. Cockton, S.W. Draper, G.R.S. Weir (Eds.), Cambridge
University Press, Cambridge, 1994, pp. 353-366. http://www-
ksl.stanford.edu/KSL_Abstracts/KSL-93-62.html

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based In-
terface Tools, in Proceedings of the Conference on Human Factors in Computing
Systems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM
Press, New York, 1993, pp. 383-390. http://www.isi.edu/isd/Interchi-be-yond.ps

[Szekely95] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher,
E., Declarative interface models for user interface construction tools: the MASTERMIND ap-
proach, in « Engineering for Human-Computer Interaction », Proceedings of the 6th
IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-Computer
Interaction EHCI’95 (Grand Targhee Resort, 14-18 August 1995), L. Bass, C.
Unger (Eds.), Chapman & Hall, London, 1995, pp. 120-150.
http://www.isi.edu/isd/Mastermind/Papers/ ehci95.ps

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in Proceedings of the Conference on Human
Factors in Computing Systems INTERCHI’93 « Bridges Between Worlds » (Am-
sterdam, 24-29 April 1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T.
White (Eds.), ACM Press, New York, 1993, pp. 424-429. http://www.
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005

[Wiecha90] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S., ITS: A Tool for
Rapidly Developing Interactive Applications, ACM Transactions on Information Systems,
Vol. 8, No. 3, July 1990, pp. 204-236.

	Abstract
	Keywords
	Introduction
	1 The Mecano Project
	2 A Metalevel Approach to Modelling
	3 The MIMIC Modelling Language
	3.1 The Sample Interface
	3.2 Keys for Reading the MIMIC Grammar
	3.3 Top Level Categories
	3.4 Global Categories
	3.5 The User-Task Model Component
	3.6 The Domain Model Component
	3.7 The Presentation Model Component
	3.8 The Dialogue Model Component
	3.9 The Design Model Component
	3.10 The User Model Component

	4 Model Validation
	5 Implementation Issues: Automating Model Building
	6 Related Work
	Conclusion
	Acknowledgements
	References

