
Tool support for handling mapping rules from domain to
task models

Costin Pribeanu
National Institute for Research and

Development in Informatics
Bd. Mareşal Averescu Nr. 8-10,

011455 Bucharest, Romania
pribeanu@ici.ro

ABSTRACT
The success of model-based approaches to user interface design
depends on the ability to solve the mapping problem as well as on
the availability of tools able to reduce the effort of establishing
and maintaining of links between models throughout the
development life cycle. In this paper a tool supporting a small set
of mapping rules is presented. The tool enables the designer to
produce task model fragments at operational level based on the
patterns of mapping between task and domain models. The task
model fragments are generated in XML format and can be further
loaded in task modeling tools like CTTE or Teresa.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and techniques.
H5.2 [Information Interfaces and presentation] User interfaces.

General Terms
Design, Human Factors, Languages.

Keywords
Model-based design, Task models, Mapping problem.

1. INTRODUCTION
The explosion of mobile and embedded systems is challenging the
development of interactive systems able to run in different
contexts of use. The model-based approach could be seen as a
progressive derivation of user interface components from
representations expressing relations between users, tasks, domain,
environment, and technology. The strength of this approach relies
on the separation of various models which are capturing the
context variations. In turn, the generative power of these
abstractions relies mainly on the mappings between models.

The mapping problem has been defined in [8] as a key problem
for the gradual transformation of models from abstract to concrete
level as well as for the mapping between different models on the
same level of abstraction. Previous work in this area highlights the
concern for preserving consistency between models along the

progression from one model to another [2], elaboration of graceful
degradation rules for multi-target user interfaces [3] as well as
development of a description language and tools supporting the
specification transitions [4].

This paper is presenting a small set of mapping rules between task
and domain models and a tool supporting the automate derivation
of task model fragments from the domain model. The tool enables
the designer to integrate domain modeling results (object,
attributes and relationships) into task models that are developed
by using the CTT notation [5].

The rest of this paper is organized as follows. In section 2, we will
briefly describe our task modelling framework and some general
mapping rules between domain, task and presentation models.
Then we will describe a tool supporting a set of rules that are
covering a significant effort in a task-based design of user
interfaces. The paper ends with conclusion in section 4.

2. THE TASK MODELING FRAMEWORK
Our model-based design framework is focusing on the relations
between three models: task, domain and presentation. The
purpose of modeling is to derive as much as possible from the
user interface based on the mappings between the components of
these models.

The basic element in the presentation is the abstract interaction
object (AIO). We distinguish between information control AIOs
(such as text boxes, check boxes or lists) and function control
AIOs (such as buttons or menus). The user interface is structured
into dialog units featuring various AIO configurations. The user is
manipulating AIOs to change something in the domain model:
objects, attributes and relationships between objects.

We identified three layers which are relevant in the task modeling
for user interface design:

� A functional layer that results from mapping application
functions onto user tasks, corresponding to business goals
(such as clients or order management).

� A planning layer that results from the decomposition of
functional tasks up to the level of unit tasks [1, 7], having a
clear relevance for the user (such as adding a new client or
updating the client address).

� An operational layer that results from the decomposition of
unit tasks up to the level of basic tasks. A basic task has been
defined in [7] as the lowest level task that is using a single
interaction object, or a single external object or serves a
communicational goal.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1 is illustrating various kinds of patterns of mapping that
occur in and between task, domain and presentation models. The
framework shows horizontal mappings between elements from
different models as well as vertical mappings within the
hierarchical structure of each model.

Fig. 1. Domain-task-presentation mappings

In this paper we will focus on mapping rules that apply to the
lower levels of task and domain models, i.e. the mapping of
domain objects and attributes onto unit tasks and basic tasks.

In order to illustrate our approach we will take an example: an
application for data management in a trade company. The target
task is the recording of new orders. In Figure 2, a task model
representation using the CTT notation is given.

Tasks on the first decomposition level are corresponding to the
business goals of the application: management of clients, products
and orders. Each of them is further decomposed in tasks that
correspond to the high level functions of the applications that
support these goals. For the sake of simplicity and legibility of the
representation, only the decomposition of the target task (“New
order”) is shown in Figure 2.

The task new order is a leaf in the functional layer and is further
decomposed in the planning layer up to the level of unit tasks.

Unit tasks are further decomposed up to the level of basic tasks.
Again, for the sake of legibility, only the task “New product” has
been decomposed up to the level of basic tasks.

Fig. 2. An example illustrating the layered task modeling approach

In [7] it was shown that the operational task model suggests the
first level of aggregation of abstract interaction objects into AIO
groups. Interaction object groups, which have one or more
information control AIO (for example, a text box or a list box)
and one function control AIO (sometimes two, but the user could
choose only one of them at a given time – for example buttons
OK vs. Cancel) provide with a first level of structuring the
interface. As such, they can be used as basic building blocks for
the presentation model in a task-based design.

The goal of an information control basic task is the manipulation
of a domain object attribute (such as display or edit). The
mapping rule described below is well known in the model based
design of user interfaces and has been widely used in early model-
based approaches to user interface design.

MR1. Information control basic tasks in the task model are
mapped onto domain object attributes in the domain
model and abstract interaction objects in the presentation
model. Attribute names are mapped onto AIO labels

The goal of a function control basic task is to trigger a transaction
changing some attribute values in the domain model or to present
them in the interface. Each basic task in this category is using a
function control AIO. (Function control is sometimes termed as
action control and the focus is on low level functions or
commands provided by the user interface).

MR2. Function control basic tasks in the task model are mapped
onto available commands on the target platform and
abstract interaction objects (AIO) in the presentation
model

Mapping rules MR1 and MR2 are the lowest level of horizontal
mappings illustrated in Figure 1 on the last row of the table.

The operations performed on domain objects (such as display,
new, update or delete) are mapped onto unit tasks. In Figure 2, the
first basic task has an enabling role for the unit task. Usually, the
task name is a concatenation of the enabling basic task name
denoting the operation and the domain object name.

This task structure is a typical task pattern for data entry tasks
carried on in a separate dialog unit and suggests a composition
rule for this category of unit tasks. The mapping rule described
below makes it possible the derivation of a great part of the task
model (operational layer) from the application domain model.
This is very useful when using task-based design tools for the
computer-aided design of user interfaces.

MR3. Unit tasks corresponding to operations performed onto
domain objects are usually starting with one (or two)
function control basic task selecting the operation (and the
object) and are ending with one or two function control
basic tasks for the confirmation (or canceling) of task
completion

Since this mapping takes the form of a composition, it could be
further expanded in more detailed rules, following each type of
operation. This way it is possible to automate the derivation of a
great part of the task model from the domain model. For example,
in the case of the task “New order” in Figure 2, the task model
statistics provided by the CTTE tool shows a total of over 40 tasks
for which the designer should manually specify the task model,
including temporal relations (operators), attributes and objects for
each task.

In the table in Figure 1, MR3 covers a vertical mapping in the task
model (unit task-basic tasks) and a horizontal mapping between
domain and task models (domain object-unit task).

3. TOOL SUPPORT FOR DETAILED
MAPPING RULES
In order to illustrate more detailed mapping rules, we will use a
simplified task notation that could be mapped onto the CTT
notation, like in Figure 3. There are three types of basic tasks: two
for information control (interactive and display only) and one for
function control.

Fig. 3. A simplified task notation and the correspondence with the

CTTE graphical notation

We identified five detailed mapping rules by applying MR3 to
five operations performed onto domain objects. Each mapping
rule is expressed bellow as a task pattern having a prefixed part, a
sequence of information control basic tasks and a post fixed part.
In three cases (b, c and d), a task for selecting the target object is
needed before selecting the command.

The process of computer-aided generation of full decomposition
for unit tasks is illustrated in Figure 4. The designer selects the
object and the object attributes that are relevant for the context of
use. Then (s) he checks on the operations to be performed onto it.
In the case of a search operation, (s) he will also select the search
key attribute. The generated unit tasks are shown in the lower left
list box.

(a) add new object

The user selects the “new”
command and the object
attributes are displayed with their
default values and available for
data entry. The user can confirm
or cancel the transaction.

(b) edit object attributes

The user selects the object to be
modified and then selects the
“edit” command. The object
attributes are displayed and
available for data entry. The user
can confirm or cancel the
transaction.

(c) delete object

The user selects the object to be
deleted and then selects the
“delete” command. A shield
message is displayed so the user
could check once again if (s) he
really wants to perform. The user
can confirm or cancel the
transaction.

(d) display object
attributes

The user selects the object to be
displayed and then selects the
“display” command. The object
attributes are displayed until the
user confirm the visualization

(e) search object

The user inputs the search key
(attribute) and then selects the
“search” command. If the search
succeeds, then object attributes
are displayed. Otherwise, an error
message is displayed.

The designer can choose all the operations or only those that are
relevant for the context of use. Moreover, (s) he can select only
attributes that are relevant for the target context of use.

For example, according to the functional layer in Figure 2, in the
context client data management, all operations on domain objects
and all object attributes are needed while in the of recording a
new order, only the operations that are checked in Figure 4 are
selected. On another hand, the “search object” pattern is applied
twice in this case (search by id and search by name).

In some situations, a manual post processing might be needed for
the task model fragment generated by the tool. For example, the

enabling basic task might not be needed, if the unit task is
implicitly enabled. An example is the case of iterative tasks that
are implicitly started and explicitly stopped, like in the case of
“New product” in Figure 2. The user ends the iteration by
selecting the “Finish” command.

Fig. 4. Tool supporting mappings from domain to task model

The unit tasks are generated in XML format and are loaded in the
CTTE tool [5] with the “Load CTT as XML” function. The
generation process is producing a full specification (task attributes
and interaction objects) according to the specification of domain
object attributes in the domain model (a time consuming work if
manually introduced with the CTT editor).

4. CONCLUSION AND FUTURE WORK
In our task-based approach, the task model is gradually developed
from functional to planning and operational levels. In this paper
we presented a tool supporting a small set of patterns of mapping
between task and domain models at operational level. Further
work is needed to extend these detailed mapping rules and to
explore the mappings between goal hierarchies in the task model
and relationships between domain objects in the domain model.

The mapping rules are preserving the consistency between
domain, task and presentation models and make it possible the

computer aided design of user interface. In this respect, the
specification of domain objects is automatically transformed into
a XML specification of unit tasks following the composition
rules. Then the generated tasks are loaded in Teresa [6] or other
tool supporting the computer-aided generation of the presentation.
Since task variations play an important role when migrating from
a target context of use to another, the computer aided generation
of (an important part of) contextualized task models is a key
facility for designers.

5. Acknowledgement
This tool has been developed during a scientific visit at ISTI-CNR
Pisa. We gratefully acknowledge the support of SIMILAR NoE
under FP6-507609 project.

References
[1] Card, S. K., Moran, T. P. and Newell, A.: The psychology of

human-computer interaction. Lawrence Erlbaum Associates.
(1983).

[2] Clerckx, T., Luyten, K. & Coninx, C.: The mapping problem
back and forth: Customizing dynamic models while
preserving consistency. Proc. of Tamodia 2004 (2004) 99-
104.

[3] Florins, M. & Vanderdonckt, J.: Graceful degradation of user
interfaces as a design method for multiplatform systems.
Proceedings of IUI’2004. ACM Press (2004) 140-147

[4] Limbourg, Q. & Vanderdonckt, J.: Addressing the mapping
problem in user interface design with USIXML. Proc. of
Tamodia 2004 (2004) 155-164.

[5] Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTree: a
Diagrammatic Notation for Specifying Task Models. In:
Proceedings of IFIP TC 13 Int. Conf. on Human-Computer
Interaction (Syndey, June 1997). Chapman & Hall, London
(1997), 362–369

[6] Paternò, F. , Santoro, C. :One Model, Many Interfaces.
Proceedings of CADUI'2002, Kluwer. 143-154.

[7] Pribeanu, C. & J. Vanderdonckt (2002) Exploring Design
Heuristics for User Interface Derivation from Task and
Domain Models. Proceedings of CADUI'2002, Kluwer,103-
110.

[8] Puerta, A.R. & Einsesnstein: J. Towards a general
computational framework for model-based interface
development systems. Proceedings of IUI’99 (5-8 January
1999). ACM Press. (1999). 171-178.

