
151

Chapter 12

RAPID PROTOTYING OF DISTRIBUTED USER
INTERFACES

José Pascual Molina Massó1,2, Jean Vanderdonckt1,Pascual González López2,
Antonio Fernández-Caballero2, and María Dolores Lozano Pérez2
1 School of Management (IAG), Université catholique de Louvain
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
E-mail: {molina, vanderdonckt}@isys.ucl.ac.be
Tel: +32 10/478525 – Fax: +32 10/478324 – Web: http://www.isys.ucl.ac.be/bchi
2 Lab. of User Interaction & Software Engineering
Inst. de Investigación en Informática de Albacete (I3A), Universidad de Castilla-La Mancha
Campus universitario s/n – S-02071 Albacete (Spain)
E-mail: {jpmolina, pgonzalez, caballer, mlozano}@dsi.uclm.es
Tel: +34 967/599200 – Fax: +34 967/599224 – Web: http://www.i3a.uclm.es

Abstract This paper introduces a software tool for rapid prototyping of interactive sys-
tems whose user interfaces could be distributed according to four axes defined
in a design space: type of computing platform, amount of interaction surfaces,
type of interaction surface, and type of user interface. This software is based
on a virtual toolkit for rendering the user interfaces in a virtual world depicting
the real world in which the distribution occurs. The virtual toolkit consists of a
layer for rendering a concrete user interface specified in a user interface de-
scription language. This paper presents its extension to modeling the external
environment in terms of the design space so as to render the context of use in
which the user interfaces are distributed. For each axis, a pair of functions en-
ables exploring the axis in decreasing and increasing order so as to explore
various situations of distribution, axis by axis, or in a combined way. As the
interfaces resulting from this rendering are truly executable ones, this system
provides designers with an acceptable means for generating ideas about how a
user interface can be distributed in a context of use, and helps to evaluate the
quality of a solution at an early design stage. Four representative situations lo-
cated on the design space are implemented and discussed: distribution in a
multi-platform context, distribution of the workplace, ubiquitous computing,
and ambient intelligence, thus proving the coverage of the design space and
the capabilities of the whole system.

Keywords: Ambient intelligence, Context-aware computing, Distributed computing, Dis-
tributed interfaces, Pervasive computing, Ubiquitous computing, User inter-
face extensible markup language, Workplace distribution.

152 Molina, Vanderdonckt, González, Caballero, and Lozano

1. INTRODUCTION

Distributed User Interfaces (DUIs) [1,6,14] apply the notion of distribut-
ing parts or whole of a user interface (UI) across several places or locations
like Distributed Systems [12] do for general software. In studying DUIs, we
have identified two main classes of problems: an ontological confusion
about the various concepts and associated definitions expressing how and
according to what to distribute a given UI; a practical problem of experi-
menting a DUI at early design time before developing it completely.

The first class of problems is motivated by observing that the several re-
cent advances in DUIs (among them are [4,7,9,12,14,17,18,19,20]) do not
necessarily rely on the same concepts of distribution and, when it is the case,
the definition and/or the axes according to which the distribution may take
place largely vary from one research to another. Although significant efforts
exist to shed some light in this area and to structure DUI design issues,
mainly in [1,6], the relationship between these design issues and their corre-
sponding physical configurations are not always straightforward to establish.

The second class of problems poses even more challenges because devel-
oping DUIs eminently require a sophisticated architecture, and due to that
level of sophistication it not surprising that DUIs are slow to obtain, expen-
sive to produce, and probably equally complex to use.

The aforementioned observations show that designing a DUI remains a
complex problem which may prevent designers from exploring design issues
because of their associated cost. If the development cost of several DUIs is
too high with respect to the benefit of exploring different design issues and
physical configurations for distribution, it is likely that this exploration will
be abandoned soon due to lack of flexibility. In addition, the usability issues
raised by distributing a UI across one or several dimensions [10,21] are seri-
ous and could be hard to uncover before a really usable solution is found.

Therefore, we argue that rapid prototyping of DUIs [10,19] turns to be an
important issue: not only rapid prototyping could be used as a vehicle for
developing and demonstrating visions of innovative DUIs, but also they
could help showing various distribution configurations before going to full
implementation [2]. However, rapid prototyping is also a challenging prob-
lem, as the design space of DUIs covers a wide range of different possibili-
ties. In order to tackle this complexity, the approach presented in this paper
is to develop a software tool which supports rapid prototyping of DUIs based
on a limited, but significant, set of four design dimensions.

The remainder of this paper is sequenced as follows: the four design di-
mensions for DUIs will be defined in a design space in Section 2, namely
based on an environment model. This design space will be then exploited to
compare related work in consistent terms in Section 3. Section 4 will exem-

Rapid Prototying of Distributed User Interfaces 153

plify four frequently found situations where UIs are distributed across one
dimension of the design space considered at a time, while showing that com-
bination is allowed. Each subsection is devoted to each design dimension.
Section 5 will sum up the benefits of the rapid prototyping approach.

2. DESIGN SPACE FOR DISTRIBUTED USER IN-
TERFACES

The design space described in this paper relies on an environmental
model and four axes or dimensions which are explained in terms such as
“digitization” or “dematerialization”, to cite just a couple of them. But, prior
to defining these concepts on which the rest of this paper will rely, there are
others that also support this work and so they must be explained before con-
tinuing. These are the UI development framework used, and the notion of
context of use and interaction surface.

2.1 Foundation
In this paper, it is assumed that the development of user interfaces relies

on the CAMELEON framework [3], which structures the development life cy-
cle of multi-target UIs according to four layers (Fig. 1):
1. The Final UI (FUI) is the operational UI, i.e. any UI running on a par-

ticular computing platform either by interpretation (e.g., through a Web
browser) or by execution (e.g., after the compilation of code in an inter-
active development environment).

2. The Concrete UI (CUI) expresses any FUI independently of any term re-
lated to a peculiar rendering engine, that is, independently of any markup
or programming language.

3. The Abstract UI (UI) expresses any CUI independently of any interaction
modality (e.g., graphical, vocal, or tactile).

4. The Task & Concept level, which describes the various interactive tasks
to be carried out by the end user and the manipulated domain objects.

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction
Figure 1. The Cameleon User Interface Reference Framework.

154 Molina, Vanderdonckt, González, Caballero, and Lozano

We refer to [3] for more details and to [13] for its translation into models
uniformly expressed in the same User Interface Description Language
(UIDL). The selected language for this work is UsiXML [13], which stands
for User Interface eXtensible Markup Language (http://www.usixml.org).
Any other UIDL could be used equally provided that the used concepts are
also supported.

The Context of use describes all the entities that may influence how the
user’s task is carrying out with the future UI. It takes into account three rele-
vant aspects, each aspect having its own associated attributes contained in a
separate model: user type (e.g., system experience, task experience, task mo-
tivation), computing platform type (e.g., mobile platform vs. stationary one),
and physical environment type (e.g., office conditions, outdoor conditions).

Finally, we define the concept of interaction surface, which was intro-
duced by [5], as any physical surface which can be “acted on or observed” so
as to support user interaction with a system, whether visible or embedded.
For instance, an interaction surface could be a screen, a monitor, a wall dis-
play, a table equipped with camera tracking techniques, or a pad with projec-
tion. See [5] for a complete definition of physical (e.g., weight, size, mate-
rial, shape, solidity/fluidity/nebulosity) and modality attributes.

2.2 Environment Model
For the purpose of this work, a richer environment model has expanded

UsiXML’s existing physical environment model with the concept of interac-
tion surface. The physical environment (Fig. 2) is expanded with a charac-
terization of its physical space, described as a scene which is in turn decom-
posed in surfaces, to be connected together or not through position and ori-
entation. This characterization is deeply inspired by world modeling which is
traditional to VRML97/X3D 3D worlds [16]. Each surface composing the
physical space (e.g., the walls, the table, or the doors of a room) could be de-
clared as an interaction surface which can be acted on or observed, depend-
ing on input/output.

A second addition is that each environment could comprise one or sev-
eral computing platforms, each of them being characterized with a series of
attributes. Each computing platform could be located precisely with respect
to an environment surface and could hold none, one or many hardware plat-
forms, which are declared as a general form of output (e.g., a display, a
monitor, a screen). Each such platform is of course an interaction surface
which could be acted on (by using pointers) and/or observed (by looking at
the screen). Each interaction surface is defined by its shape, which is the area
sensible to interaction. Hardware platforms are therefore considered as rec-
tangular-shaped interaction surfaces. One could imagine probably other
shapes like a circle or an oval, but in our implementation, only convex sur-
faces are subject to the FUI rendering.

Rapid Prototying of Distributed User Interfaces 155

Figure 2. The expanded environment model, based on the notion of interaction surface [5].

2.3 Definition of the Design Space

The proposed DUI design space is decomposed into four design axes or
dimensions (Fig. 3): type of computing platform, amount of interaction sur-
faces, type of interaction surface, and type of user interface. They are respec-
tively explained in more detail in the following subsections. Lyytinen and
Yoo [15] have studied how conventional systems may evolve in the future
towards ubiquitous computing through two dimensions: the level of system
integration within the ambient environment and the degree of mobility.
These two dimensions correspond to type of interaction surface and type of
computing platform respectively in the design space of Fig. 3.

156 Molina, Vanderdonckt, González, Caballero, and Lozano

Phonetop

Palmtop

Handtop

Laptop

Desktop

Type of computing platform

Mobilization

St
ati

on
ar

iza
tio

n

One Two Many centralized Many decentralized

Decentralization

Centralization

A
m

ou
nt

of
 in

te
ra

ct
io

n
su

rfa
ce

s

Type of interaction surface

Monitor

Display
Projection
surface
Any in-

teraction
surface

Ph
ys

ica
lis

ati
onDigitization

Materialization

Dematerialization

SoftwareMixedHardware

Type of user interface

Phonetop

Palmtop

Handtop

Laptop

Desktop

Type of computing platform

Mobilization

St
ati

on
ar

iza
tio

n

One Two Many centralized Many decentralized

Decentralization

Centralization

A
m

ou
nt

of
 in

te
ra

ct
io

n
su

rfa
ce

s

Type of interaction surface

Monitor

Display
Projection
surface
Any in-

teraction
surface

Ph
ys

ica
lis

ati
onDigitization

Materialization

Dematerialization

SoftwareMixedHardware

Type of user interface

Figure 3. The four design dimensions of the DUI design space.

2.3.1 Type of Computing Platform

The type of computing platform represents the first axis along which a UI
may be distributed, meaning here that parts or whole of an existing UI may
transit from one computing platform to another. On this axis, the computing
platforms are ranked by decreasing order of mobility:
• “Stationarization” is the process consisting of rendering a FUI on a target

platform which is more stationary than the source platform. Each pro-
gressive graduation on this axis could be achieved by performing an ab-
straction from CUI to AUI, followed by reification from AUI to CUI, and
then restricted by a selection to more stationary platforms [3]. A simple
translation from CUI to CUI may also work.

• “Mobilization” is the inverse process. To support moving along this axis,
various operations are diversely supported in the literature such as direct
transfer (simple translation without any modification), migration, copy-
ing, or duplication [1].

2.3.2 Amount of Interaction Surfaces

The amount of interaction surfaces denotes how many interaction sur-
faces are used to render the DUI. Typical cases are: a single monitor per
computing platform, two dual monitors [10], three to five monitor display
wall (e.g., www.panoramtech.com, www.go-l.com), and many displays

Rapid Prototying of Distributed User Interfaces 157

which could be centralized per computing platform or decentralized, thus
posing the problem of multiple foci of interest for one task [21]. These are
the terms that characterize this axis:
• “Decentralization” is the process consisting of rendering a FUI on more

interaction surfaces than previously, the displays being connected to the
same computing platform or not. Each progressive graduation on this
axis could be achieved by performing a decomposition of the source UI
(e.g., by graceful degradation [8], by fragmentation [20], by semantic re-
design [18]) which are then rendered on the various interaction surfaces.

• “Centralization” is the inverse process. To support it, various operations
like union, merging, re-composition may occur before re-rendering the
gathered pieces on less interaction surfaces.

2.3.3 Type of Interaction Surface

The type of interaction surface depicts the level of physicality of the in-
teraction surface used to render the UI. A computer monitor or a public dis-
play are considered as digital interaction surfaces, as opposed to projection
surfaces which are considered as physical ones since the UI is rendered by
projection from a projector and user’s events are tracked by camera recogni-
tion techniques borrowed from signal processing domain. Consequently:
• “Physicalization” is the process of rendering a FUI on a target interaction

surface that is more physical than the source one. For this purpose, dif-
ferent rendering functions should be implemented depending on the type
of interaction surface used. Whether the surface resolution changes, re-
purposing functions could be called to reshuffle the UI components.

• “Digitization” is the inverse process (to digitize = to convert data such as
an image to a digital form – source: Merriam Webster On-line).

2.3.4 Type of User Interface

The type of user interface expresses the physicality level of the FUI com-
ponents. A DUI is said to be software when all its components are traditional
software widgets, hardware when all its components are physical objects
like switches, buttons, and mixed when components could either be software
or hardware simultaneously. Therefore:
• “Materialization” is the process consisting of changing the distribution of

the FUI towards more physical components (to materialize = to cause to
appear in bodily form – source: Merriam Webster On-line). Each pro-
gressive graduation on this axis could be achieved by performing a de-
composition of a source FUI into smaller pieces and re-assigning dedi-
cated pieces to physical objects instead of software objects. This obvi-
ously touches the area of tangible UIs.

158 Molina, Vanderdonckt, González, Caballero, and Lozano

• “Dematerialization” is the inverse process (to dematerialize = to cause to

become or appear immaterial – source: Merriam Webster On-line). To
support it, a FUI is decomposed into fragments, some of them being re-
assigned to digital objects (e.g., widgets). When a digital object is trans-
formed to a physical one, its CUI definition is abstracted [3] into an AUI
counterpart, followed by a reification from AUI to CUI, and then re-
stricted by a selection to only those objects belonging to the physical
world. In this way, it is possible to find out an object in the physical
world with an equivalent behavior, the presentation of which does not
matter [22].

2.4 Software Tool for Rapid Prototyping
To support the various operations involved in the design space defined in

Fig. 3, VUITOOLKIT [17] has been developed above UsiXML and expanded
with the environment model of Fig. 2 so as to render a CUI as a FUI in a vir-
tual world. First, the environment model gives rise to a virtual world com-
posed on surfaces, some of them being interactive. In particular, computing
platforms could be located on some of these surfaces or considered as an in-
teraction surface per se. Second, the toolkit abstracts objects from Web3D
languages (e.g., VRML, VRML97, X3D which are typically used in model-
ing virtual reality worlds and scenes). To bridge the gap between a UsiXML
specification and its counterpart in virtual reality, and to render it properly in
the virtual world, several cases could occur (Table 1):

1. Direct mapping between a CUI and a Web3D primitive. This mapping
could be one-to-one (bijection) or one-to-many (composition of objects).
It is not always possible to set a one-to-one mapping as those Web3D lan-
guages define basic elements such as shapes and sensors that must be used
together to create interactive elements, e.g., 3D widgets. The new standard
X3D does not change this status, even though it includes new 2D geome-
try nodes that make easier to draw 2D interfaces in a 3D world. Therefore,
some basic widgets (e.g., a window) were redeveloped from scratch by as-
sembling shapes together with their behavior.

2. New mapping between a CUI and a Web3D counterpart. Sometimes, no
object exists natively in the Web3D language to ensure the mapping. In
this case, there is a need to fill this gap by introducing a new widget in the
Web3D world by appropriate implementation. This is what happens with
the CUI used as a starting point for the toolkit, for each of them there is an
element in the toolkit that can be used for their representation in the FUI.
For this purpose, all widget classes defined in a UsiXML-compliant CUI
have been sub-classed into their equivalent objects in virtual reality. Typi-
cal examples of these objects include check box, radio button, list box,

Rapid Prototying of Distributed User Interfaces 159

combo box, slider, and cursor. This correspondence remains incomplete:
some CUI attributes are not subject to any rendering in the virtual world,
some other attributes missing in the CUI definition are added because they
are necessary to render their presentation and their behavior [16,17], such
as those properties for the position and the dimensions of the widget.

3. No possible mapping. Despite the efforts to establish a mapping between
any CUI and its counterpart, the UsiXML concept of box (the layout is
decomposed into a hierarchy of vertical and horizontal boxes) is trans-
formed into a system where coordinates of objects are computed from
constraints imposed on them, instead of solving the constraints at render-
ing time. In case of rendering on a surface which is not a computing plat-
form screen (e.g., a wall), surface attributes are exploited.

Table 1. Possible mappings between 2D and 3D.

CUI level (UsiXML) VUIToolkit (VRML97 / X3D)
∃ individual CIO c ∃ widget w such as f(c)=w (direct mapping)
 ∃ widget w such as ∀ ci∈ c, ∃ fi ⏐ fi(c)=wi (new

mapping between properties)
 widget w such as f(c)=w (no possible mapping)

3. RELATED WORK

Several advanced researches could be classified according to the design
space depicted in Fig. 3. Due to limited space, we only discuss those consid-
ered as the closest ones to this work.

MODIE [14] and DYNAMO-AID [4] provide a distribution manager which
distributes the sub-task of a task model to various computing platforms in
the same environment. This system completely supports mobilization and
stationarization as the UIs could be distributed to any platform, but only one
interaction surface is used at a time as a platform screen with digital objects.
Therefore, the three other dimensions are not covered. This process is task
based since the task model initiates the distribution of the UI fragments cor-
responding to the sub-tasks. Conversely, in our approach, no task model is
used: each UI is first designed in an interface builder (e.g., GrafiXML –
http://www.usixml.org) or imported from an external format in this editor.
Each CUI resulting from this editing is then assigned to one or several inter-
action surface, whether it is a computer screen or not. Then, each CUI could
be manipulated in direct manipulation [17] to support operations like trans-
fer, copy, clone, duplicating, or migration.

In the MIGRATION project [1,18], partial and full migrations are sup-
ported, thus covering centralization and decentralization on top of the rest. In
Everywhere [20], physicalization and digitization are added since UIs could

160 Molina, Vanderdonckt, González, Caballero, and Lozano

be rendered on various interaction surfaces such as large screens, white-
board, wall displays as well as personal surfaces. Only digital interfaces are
considered as opposed to 3DSim [19], where only hardware interfaces are
supported because it is the tool’s goal to prototype physical interfaces in an
environment, thus also providing some sort of rapid prototyping. The mate-
rial development of the physical UI is conducted after the prototype is vali-
dated. The situation is similar for [9]. XIN [12] consists of a XML-compliant
language for expressing interactive systems which are distributed across
various locations, with some workflow support between them. However, it
does not detail much the UI structure and presentation and the world is not
modeled.

In this paper, the environment model is produced as a virtual reality
scene, thus allowing the rendering of both software (e.g., widgets) and hard-
ware (e.g., physical buttons) objects, but this is achieved for rapid prototyp-
ing purposes only. It is obvious that it cannot produce a physical UI, but the
corresponding UsiXML specifications could be passed to the team in charge
of the development. The tool provides basic operations such as copy a CUI
from one surface to another one, whether they belong to a computing plat-
form or not, duplicate, migrate. Composition and decomposition algorithms
are beyond the scope of this paper and could be found in the literature [1].
Here, they are done by graphically selecting the portions subject to (de)com-
position. In the next section, we exemplify the use of the design space and
the tool with four representative situations where a UI is distributed.

4. FOUR SITUATIONS OF DISTRIBUTED USER
INTERFACES

4.1 Across Multiple Computing Platforms

Multi-platform computing could be considered as a distribution case
where a software UI is distributed successively from one platform to another
one. Fig. 4 graphically depicts an example of mobilization, where a UI ren-
dered on a monitor of a stationary PC is migrated to the screen of a highly
portable platform, which can be carried by everyone. This operation is repre-
sented on the design space by laptop (top axis), one screen at a time (right
axis), platform (bottom axis), and digital UI (left axis).

In order to trigger the migration, each window is augmented by an addi-
tional button freezing the UI state and allowing the user to move the window
to another target, before releasing it [17]. Once migrated, the user can con-
tinue her task by manipulating the window objects. In case of migrating only
a portion of it, the user can graphically select the objects subject to transfer.

Rapid Prototying of Distributed User Interfaces 161

Figure 4. Example of a mobilization.

4.2 Across Multiple Interaction Surfaces

Workspace analysis could be considered as a distribution case where a
software UI is distributed across multiple interaction surfaces. Workspace
analysis is typically interested in investigating how information and related
functions could or should be located so as to optimize the workflow, to
minimize movements between locations, while allowing several persons
working together. Fig. 5 graphically depicts an example where various UI

162 Molina, Vanderdonckt, González, Caballero, and Lozano

fragments are decentralized, that is, rendered on different surfaces of differ-
ent computing platforms (from desktop to palmtop as in Fig. 3).

Figure 5. Example of a decentralization with different interaction surfaces.

Figure 6. A software UI projected onto a wall.

Rapid Prototying of Distributed User Interfaces 163

4.3 Across Different Types of Interaction Surfaces

Ubiquitous or pervasive computing could be considered as a distribution
case where a software/hardware UI is distributed across multiple interaction
surfaces of different types. The right part of Fig. 5 demonstrates how a soft-
ware UI could be distributed simultaneously on different monitors as well as
an image projected onto a wall (Fig. 6 for the detailed view).

Physicalization is supported in our tool simply by moving the concerned
UI from a digital interaction surface onto a physical one. The migration but-
ton is used again for this purpose, but the UI could only be released when it
flies over a physical surface. Digitization is supported similarly in the in-
verse way. In the target interaction surface is comparable, respectively more
limited in real estate than the source surface, the UI could remain un-
changed, respectively be submitted to a graceful degradation process. In the
case of Fig. 6, the UI remains software, thus keeping the UI definition un-
changed. However, when it comes to make a UI material (through a materi-
alization process), the UI should accommodate some changes explained in
the next subsection.

4.4 Multiple Types of User Interfaces

Ambient intelligence [8,11,14,19] could be considered as a distribution
case where the UI consists of software and/or hardware parts distributed in
the environment. Fig. 7 exemplifies a situation where a software UI distrib-
uted across several computer screens co-exists with a physical UI embedded
in the wall. In this case, the lighting and heating controls are no longer soft-
ware objects, but built-in physical objects. When a software UI is submitted
to materialization, the system attempts to discover a physical object which is
equivalent enough in behavior to be used as a physical object. To this end, a
CIO is abstracted into its corresponding Abstract Individual Component
(AIC in UsiXML) at the AUI level. At this level, possible reifications of this
AIC are identified and examined. If a reification corresponds directly to the
initial CIO, this reified CIO is selected. Otherwise, the closest possible reifi-
cation is preferred.

For instance in Fig. 7, the label displaying “75%” is transformed into a
LED object displaying the same information, the heating toggle button in the
software UI becomes a physical switch in the hardware UI, the “Auto” check
boxes become another physical two-state switches, and the sliders become
physical cursors. Ultimately, the physical objects of Fig. 7 and the software
objects of Fig. 6 should be considered similar at the AUI level since they
correspond to the same definition of abstract containers and individual com-
ponents. Only the objects type changed. Also note that the layout changed

164 Molina, Vanderdonckt, González, Caballero, and Lozano

since the initially horizontal software controls (embedded in a horizontal
box) now become vertical after performing a reshuffle of the presentation
ensure by the rendering engine of the VUItoolkit.

Figure 7. A co-habitation of a software UI rendered on a screen and a physical UI rendered on

a wall considered as an interaction surface.

5. CONCLUSION

In this paper, we introduced a design space for distributed user interfaces
consisting of four dimensions which are supported in a tool for rapid proto-
typing them by direct manipulation. In addition, a pair of functions was de-
fined for each axis to denote the progression or regression along each axis.
These functions are ensured thanks to the rendering capabilities of VUI-
Toolkit, a virtual toolkit for rendering a concrete UI specified in UsiXML. A
richer environment model has been defined so as to represent the world in
which the distribution may occur, thus providing a direct feedback of the
configuration under study.

The various operations provided by the toolkit enable designers to ex-
plore various distributions and keeping the one which is finally found ade-
quate to the final goals. In the future, we plan to extend this work with mul-
tiple rooms and multiple users’ characterizations. “The reality of this situa-
tion (provided by this virtual representation manipulation), when you do not
believe in it, refuses to disappear” (Peter Viereck).

Rapid Prototying of Distributed User Interfaces 165

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the SIMILAR network of ex-
cellence (http://www. similar.cc), the European research task force creating
human-machine interfaces similar to human-human communication of the
European Sixth Framework Programme (FP6-2002-IST1-507609). This re-
search is fully funded by SIMILAR. The authors would like also to thank the
reviewers for their comments and Gaëlle Calvary for her feedback on an
early version of this manuscript.

REFERENCES

[1] Berti, S., Paternò, F., and Santoro, C., A Taxonomy for Migratory User Interfaces, in
Proc. of 12th Int. Workshop on Design, Specification, and Verification of Interactive Sys-
tems DSV-IS’2005 (Newcastle upon Tyne, 13-15 July 2005), M. Harrison (ed.), Lecture
Notes in Computer Science, Vol. 3941, Springer-Verlag, Berlin, 2005.

[2] Bischofberger, W.R. and Pomberger, G., Prototyping-Oriented Software Development–
Concepts and Tools, Springer-Verlag, Berlin, 1992.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.,
A Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

[4] Clerckx, T., Vandervelpen, Ch., Luyten, K., and Coninx, K., A Task Driven User Inter-
face Architecture for Ambient Intelligent Environments, in Proc. of 10th ACM Int. Conf.
on Intelligent User Interfaces IUI’2006 (Sydney, 29 January-1 February 2006), ACM
Press, New York, 2006, pp. 309-311.

[5] Coutaz, J., Lachenal, Ch., and Dupuy-Chessa, S., Ontology for Multi-surface Interaction,
in Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT’2003
(Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 447-454.

[6] Demeure, A., Calvary, G., Sottet, J.-B., Ganneau, V., and Vanderdonckt, J., A Reference
Model for Distributed User Interfaces, in Proc. of 4th Int. Workshop on Task Models and
Diagrams for user interface design TAMODIA’2005 (Gdansk, 26-27 September 2005),
ACM Press, New York, 2005, pp. 79-86.

[7] Dey, A.K., Salber, D., and Abowd, G.D., A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications, Human-Computer In-
teraction Journal, Vol. 16, Nos. 2-4, 2001, pp. 97-166.

[8] Florins, M., Simarro, F.M., Vanderdonckt, J., and Michotte, B., Splitting Rules for
Graceful Degradation of User Interfaces, in Proc. of 10th ACM Int. Conf. on Intelligent
User Interfaces IUI’2006 (Sydney, 29 January-1 February 2006), ACM Press, New
York, 2006, pp. 264-266.

[9] Gea, M., Garrido, J.L., López-Cózar, R., Haya, P.A., Montoro, G., and Alamán, X., Task
Modelling for Ambient Intelligence, in Proc. of 12th Int. Workshop on Design, Specifica-
tion, and Verification of Interactive Systems DSV-IS’2005 (Newcastle upon Tyne, 13-15
July 2005), Lecture Notes in Comp. Science, Vol. 3941, Springer-Verlag, Berlin, 2005.

[10] Grudin, J., Partitioning Digital Worlds: Focal and Peripheral Awareness in Multiple
Monitor Use, in Proc. of ACM Conf. on Human Aspects in Computing Systems
CHI’2001 (Seattle, 31 March-5 April 2001), ACM Press, New York, 2001, pp. 458-465.

[11] Gu, T., Pung, H.-K., and Qing Zhang, D., Toward an OSGi-Based Infrastructure for

166 Molina, Vanderdonckt, González, Caballero, and Lozano

Context-Aware Applications, Pervasive Computing, Oct.-Dec. 2004, pp. 66-74.
[12] Li, B., Tsai, W.-T., and Zhang, L.-J., A Semantic Framework for Distributed Applica-

tions, Proc. of the 5th Int. Conf. on Enterprise Information Systems ICEIS’2003 (Angers,
22-26 April 2003), Volume IV - Software Agents and Internet Computing, pp. 34-41.

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez, V., UsiXML: a
Language Supporting Multi-Path Development of User Interfaces, in Proc. of 9th IFIP
Working Conference on Engineering for Human-Computer Interaction jointly with 11th
Int. Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol.
3425, Springer-Verlag, Berlin, 2005, pp. 200-220.

[14] Luyten, K., Vandervelpen, Ch., and Coninx, K., Task Modeling for Ambient Intelligent
Environments: Design Support for Situated Task Executions, Proc. of 4th Int. Workshop
on Task Models and Diagrams for user interface design TAMODIA’2005 (Gdansk, 26-
27 September 2005), ACM Press, New York, 2005, pp. 87-94.

[15] Lyytinen,K. and Yoo, Y., Issues and Challenges in Ubiquitous Computing, Communica-
tions of the ACM, Vol. 45, No. 12, 2002, pp. 62-65.

[16] Molina, J.P., Vanderdonckt, J., Montero, F., and Gonzalez, P., Towards Virtualization of
User Interfaces based on UsiXML, in Proc. of 10th ACM Int. Conf. on 3D Web Technol-
ogy Web3D’2005 (Bangor, 29 March-1 April 2005), ACM Press, New York, 2005, pp.
169-178.

[17] Molina, J.P., Vanderdonckt, J., and González, P., Direct manipulation of User Interfaces
for Migration, in Proc. of 10th ACM Int. Conf. on Intelligent User Interfaces IUI’2006
(Sydney, 29 January-1 February 2006), ACM Press, New York, 2006, pp. 140-147.

[18] Mori, G. and Paternò, F., Automatic Semantic Platform-dependent Redesign, in Proc. of
Joint sOc-EUSAI’2005 (Grenoble, October 2005), pp. 177-182.

[19] Nazari Shirehjini, A.A., Klar, F., and Kirste, T., 3DSim: Rapid Prototyping Ambient In-
telligence, in Proc. of the 2005 Joint Conf. on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies sOc-EUSAI’2005 (Grenoble,
October 2005), ACM Int. Conf. Proc. Series, Vol. 121, 2005, pp. 303-307.

[20] Pinhanez, C., The Everywhere Displays Projector: A Device to Create Ubiquitous
Graphical Interfaces, in Proc. of the 3rd Int. Conf. on Ubiquitous Computing Ubi-
Comp’2001 (Atlanta, 30 September- 2 October 2001), Lecture Notes in Computer Sci-
ence, Vol. 2201, Springer-Verlag, Berlin, pp. 315-331.

[21] Tan, D.S. and Czerwinski, M., Effects of Visual Separation and Physical Discontinuities
when Distributing Information across Multiple Displays, in M. Rauterberg, M. Menozzi,
J. Wesson (eds.), Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’2003 (Zurich, 1-5 September 2003), IOS Press, Amsterdam, 2003, pp. 9-16.

[22] Vanderdonckt, J., Bouillon, L., Chieu, C.K., and Trevisan, D., Model-based Design,
Generation, and Evaluation of Virtual User Interfaces, in Proc. of 9th ACM Int. Conf. on
3D Web Technology Web3D’2004 (Monterey, April 5-8, 2004), ACM Press, New York,
2004, pp. 51-60.

[23] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

