
T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 43–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-fidelity User Interface Specifications

Thomas Memmel1, Jean Vanderdonckt2, and Harald Reiterer1

1 Human-Computer Interaction Group, University of Konstanz,
Universitätsstrasse 10, 78457 Konstanz, Germany

2 Belgian Laboratory of Computer-Human Interaction, Université catholique de Louvain,
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
{memmel, reiterer}@inf.uni-konstanz.de,

jean.vanderdonckt@uclouvain.be

Abstract. Specifying user interfaces consists in a fundamental activity in the
user interface development life cycle as it informs the subsequent steps. Good
quality specifications could lead to a user interface that satisfies the user’s
needs. The user interface development life cycle typically involves multiple ac-
tors possessing all their own particular inputs of user interface artifacts ex-
pressed with their own formats, thus posing new constraints for integrating
them into comprehensive and consistent specifications of a future user interface.
This paper introduces a design technique where these actors can introduce their
artifacts by sketching them in their respective input format so as to integrate
them into one or multiple output formats. Each artifact can be introduced in a
particular level of fidelity (ranging from low to high) and switched to an adja-
cent level of fidelity after appropriate refining. Refined artifacts are then cap-
tured in appropriate models stored in a model repository. In this way, co-
evolutionary design of user interfaces is introduced, defined, and supported by a
collaborative design tool allowing multiple inputs and multiple outputs. This
design paradigm is exemplified on a case study and has been tested in an em-
pirical study revealing how designers appreciate it.

Keywords: Collaborative design, formal and informal specifications, specifica-
tion of interactive systems, usability requirements, user interface specifications.

1 Introduction and Motivations

Software practitioners and Human-Computer Interaction (HCI) specialists today con-
cur that structured approaches are required to design, specify, and verify interactive
systems [2,6,9,11,22] so as to obtain a high usability of their User Interface (UI)
[19,21]. The design, the specification, and the verification of user-friendly and task-
adequate UIs have become a success critical factor in many domains of activity.

In the German automotive industry for instance, a wide range of different interac-
tive systems exists such as: in-car information systems supporting the driver while
traveling, information visualization of navigation data and dynamic traffic data. Oper-
ating such systems must never compromise road safety, and the respective UIs must
provide intuitive and easy-to-use navigation concepts to reduce driver’s distraction to
the lowest value possible. Both information visualization and navigation design are

44 T. Memmel, J. Vanderdonckt, and H. Reiterer

also important for corporate web sites and digital sales channels. Web applications,
such as the car configuration, play an important role in the sales planning and disposal
of extra equipment. In the car manufacturers we analyzed over the past three years
(among them are Dr. Ing. h.c. F. Porsche AG and Daimler AG), UI design remains a
too marginal activity that deserves more attention and HCI methods are not suffi-
ciently implied in the overall development life cycle [17,18]. Most UI development
tools are inappropriate for supporting actors from different disciplines in designing
interactive systems. They all possess their own particular inputs of UI artifacts ex-
pressed with their own formats and these format are generally incompatible and het-
erogeneous. On the one hand, formal UI tools may prevent some actors from taking
part in collaborative design if they these tools do not have an adequate knowledge of
specific input formats and terminologies. On the other hand, informal UI tools may
lead to misunderstanding and conflicts in communication across actors, particularly
with programmers. In particular, some tools turn out to be more focused on require-
ments management than on providing support in extracting requirements from user
needs and translating them into good UI design. After all, despite - or perhaps pre-
cisely because of - the vast functionality of many tools, the outcome is often unsatis-
factory in terms of UI design. Due to the lack of appropriate tools, many actors tend
instead to use tools they are familiar with and which can be categorized as being low
threshold (for application) - low ceiling (of results), a phenomenon observed in [8].
Ultimately, we distinguish two different families of tool users:

1. Client: actors like business personnel, marketing people, domain experts, or HCI
experts use office automation applications such as word processors and presenta-
tion software [18] to document user’s needs and their contexts of use [7] in order
to define the problem space. They will translate the needs as perceived from the
real world, and their contextual conditions, into general usage requirements and
evaluate their work at several quality stages. At this stage, responsibility is typi-
cally shared with, or completely passed on to, a supplier.

2. Supplier: actors with a sophisticated IT background (e.g., programmers or design-
ers) translate usage requirements into UI and system requirements, deliver proto-
types, and conclude the process in a UI specification. They prefer working with UI
builders, and using more formal, precise and standardized notations, they narrow
the solution space towards the final UI.

1.1 Shortcomings of, and Changes Desired in Current UI Specification Practice

The difference between these two categories of actors tends to result in a mixture of
formats. This makes it difficult to promote concepts and creative thinking down the
supply chain without media disruptions and loss of precision [16]. The following
negative factors therefore contribute to UI development failure:

1. The lack of a common course of action and the use of inappropriate, incompatible
terminologies and modeling languages [26] that prevent even the minimum levels
of transparency, traceability and requirements-visualization that would be ade-
quate for the problem.

2. The difficulty in switching between abstract and detailed models due to a lack of
interconnectivity [8].

 Multi-fidelity User Interface Specifications 45

3. The difficulty of traveling from problem space to solution space, a difficulty that
turns the overall UI development into a black-box process.

4. The burial of mission-critical information in documents that are difficult to re-
search and have very awkward traceability. Experts are overruled when the UI de-
sign rationale is not universally available in the corresponding prototypes.

5. The perpetuation of unrecognized cross-purposes in client and supplier communi-
cation, which can lead to a premature change or reversal of UI design decisions,
the implications of which will not be realized until later stages.

6. The resulting misconceptions that lead to costly change requests and iterations,
which torpedo budgets and timeframes and endanger project goals.

Because of the immaturity of their UI development processes, industrial clients de-
termine on a shift of responsibility and tend to change their UI specification practice:

1. Due to the strategic impact of most software, clients want to increase their UI-
related competency in order to reflect corporate values by high UI quality [18].

2. Whereas conceptual modeling, prototyping or evaluation have always been under-
taken by suppliers, the client himself now wants to work in the solution space and
therefore needs to develop the UI specification in-house [16].

3. The role of the supplier becomes limited to programming the final system. The
client can identify a timetable advantage from this change, and an important gain
in flexibility in choosing his suppliers. Having an in-house competency in UI-
related topics, the client becomes more independent and can avoid costly and time-
consuming iterations with external suppliers.

4. It is nearly impossible to specify a UI with office-like applications. The existing
actors, who are nevertheless accustomed to text-based artifacts, now require new
approaches. The task of learning the required modeling languages and understand-
ing how to apply these new tools must not be an unreasonably difficult one.

1.2 Tool Support That Is Adequate for the UI Design Problem

This cultural change must be supported by an integrating UI tool that allows the trans-
lation of needs into requirements and subsequently into good UI design (Table 1).

Table 1. Requirements for UI tools for interactive UI specification on the basis of [8,16]

Purpose/Added Value Tool Requirement

Traceability of design rationale; transparency of
translation of models into UI design

Switching back and forth between different
(levels of) models

Smooth transition from problem-space concepts to
solution space

Smooth progression between abstract and de-
tailed representations

HCI experts can build abstract and detailed proto-
types rapidly

Designing different versions of a UI is easy and
quick, as is making changes to it

Support for design assistance and creative thinking
for everybody; all kinds of actors can proactively
take part in the UI specification

Concentration on a specific subset of modeling
artifacts, which can be a UML-like notation or
one that best leverages collaboration

The early detection of usability issues prevents
costly late-cycle changes

Allowing an up-front usability evaluation of
look and feel; providing feedback easily

46 T. Memmel, J. Vanderdonckt, and H. Reiterer

In this paper we present both a set of models and a corresponding tool named IN-
SPECTOR, which are designed to support interdisciplinary teams in gathering user
needs, translating them into UI-related requirements, designing prototypes of different
fidelity and linking the resulting artifacts to an interactive UI specification. The term
interactive refers to the concept of making the process visually externalized to the
greatest extent possible. This concerns both the artifacts and the medium of the UI
specification itself. The latter should no longer be a text-based document, but a run-
ning simulation of how the UI should look and feel. Accordingly, we extend the
meaning of UI prototypes to also include the provision of access to information items
below the UI presentation layer. Being interactively connected, all of the ingredients
result in a compilation of information items that are necessary to specify the UI (Ta-
ble 2). In Section 2 we link our research to related work. Section 3 presents the com-
mon denominator in modeling that we developed. We explain how our tool, called
INSPECTOR, will use the resulting interconnected hierarchy of notations. We illus-
trate how abstract and detailed designs can easily be created and also exported in ma-
chine-readable User Interface Description Language (UIDL) such as XAML or
UsiXML. Section 4 presents the results of a first experimental evaluation that high-
lights the contribution of our approach. Section 5 gives a summary and an outlook.

Table 2. Main differences between prototypes and interactive UI specifications

Interactive UI Prototypes Interactive UI Specifications

Vehicle for requirements analysis Vehicle for requirements specification

Exclusively models the UI layer; may be inconsis-
tent with specification and graphical notations

Allows drill down from UI to models; relates UI to
requirements and vice versa

Either low-fidelity or high-fidelity Abstract first, specification design later

Supplements text-based specification Widely substitutes text-based specification

Design rationale saved in other documents Incorporates design knowledge and rationale

2 Related Work

An early version of a model-driven UI specification method has been already presented
[16]. With a separation of development concerns, different levels of abstraction and a
simulation framework, we were able to establish an advanced UI modeling method.
Although it was necessary to pre-define a domain-specific language (high-threshold),
the results added significant value to a previously long-winded UI specification process
(high-ceiling). But because the tool-chain was targeted towards the later stages of the
process, office applications remained dominant during earlier phases. Moreover, the
usage of a formal approach, targeted towards the generation of code from models,
proved to be limiting in terms of freedom in creativity and promotion of innovative
ideas. With INSPECTOR, we follow a model-based approach as our primary goal is
not code generation, but the collaborative and interdisciplinary specification of non-
standard UIs. However, our method and tool differ from other model-based solutions,
such as the tools Vista [11], Mapper [13], and CanonSketch [8].

 Multi-fidelity User Interface Specifications 47

Vista [11] enables the designer to define mappings between four views of the same
interactive system: a task model consisting of a recursive decomposition of the task
into sub-tasks, a CUI model, specifications of the interaction written with the UAN
notation, and specifications of the software architecture. Some of these relationships
can be established and maintained semi-automatically by Vista. No logical definition
of any underlying model is made explicit. Mapper [13] explicitly establishes map-
pings between models, either manually or automatically, the mappings being them-
selves governed by a common meta-model. This system does not allow any choice of
using this or that model transformation and does not provide any visualization.

CanonSketch was the first tool that used canonical abstract prototypes and an
UML-like notation, supplemented by a functioning HTML UI design layer. Task-
Sketch [8] is a modeling tool that focuses on linking and tracing use cases, by means
of which it significantly facilitates development tasks with an essential use-case nota-
tion. Altogether, TaskSketch provides three synchronized views: the participatory
view uses a post-it notation to support communication with end-user and clients, the
task-case view is targeted towards designers and is a digital version of index cards
(well-known artifacts of user-centered or agile developers) and the UML activity dia-
gram view is adequate for software engineers. As we will show in this paper, we
closely concur with the concepts of these tools, but our approach differs in some
important areas. Firstly, and in contrast to CanonSketch, we support detailed UI pro-
totyping because we found that the high-fidelity externalization of design vision is es-
pecially important in corporate UI design processes. Secondly, we provide more ways
of modeling (earlier text-based artifacts, task models and interaction diagrams).

DAMASK [14] and DENIM [21] both rely on a Zoomable User Interface (ZUI) ap-
proach for switching between different levels of fidelity through a visual drill-down
process. Based on this experience and our own, we followed a consistent implementa-
tion of this technique and we chose to implement an electronic whiteboard metaphor
for INSPECTOR. Whiteboards are commonly used because keeping the created arti-
facts visible to all actors enhances creativity, supports communication, makes it easier
to achieve a common design vision and leads to faster decision-making. These tools
also identified a need for supporting different levels of fidelity of requirements.

McCurdy et al. [15] identified five independent dimensions along which the level
of fidelity could be more rigorously defined: the level of visual refinement, the
breadth of functionality, the depth of functionality, the richness of interactivity, and
the richness of the data model. In the remainder of this paper, the four first dimen-
sions will be considered, the last one requiring a connection to a data model contain-
ing data. The level of fidelity is said to be low if the requirements representation only
partially evokes the final UI without representing it in full details. Between
high-fidelity (Hi-Fi) and low-fidelity (Lo-Fi), we can see medium-fidelity (Me-Fi).
We usually observe that UI requirements only involve one representation type, i.e.
one fidelity level at a time. But due to the variety of actors’ inputs, several levels of
fidelities could be combined together, thus leading to the concept of mixed-fidelity,
such as in ProtoMixer [22]. Beyond mixed-fidelity, we introduce multi-fidelity [10]
that is reached when UI requirements simultaneously involve elements belonging to
different levels of fidelity, but only one level of fidelity is acted upon at a time, thus
assuming that a transition is always possible between elements of different fidelity.

48 T. Memmel, J. Vanderdonckt, and H. Reiterer

3 The Common Denominator in UI-Related Modeling

A sophisticated UI tool must be able to support all actors in actively participating in
the UI specification process (Table 1). This requires it to deploy modeling techniques
that can be used easily by everybody. We know that the Unified Modeling Language
(UML) is a weak means of modeling the UIs of interactive systems [24]. As well as
its shortcomings in describing user interactions with the UI, its notation also over-
whelms most actors with too much (and mostly unnecessary) detail [1]. In most cases,
moreover, designing UIs is an interdisciplinary assignment and many actors might be
left behind due to the formality included in UML. Consequently, UML is like office-
like artifacts in being inadequate for specifying the look and feel of interactive UIs. In
our experience, the identification of adequate means of modeling for UI specification
is very much related to the ongoing discussion on bridging the gaps between HCI and
SE. This discussion is also propelled by the very difference in the way experts from
both fields prefer to express themselves in terms of formality and visual externaliza-
tion. HCI and SE are recognized as professions made up of very distinct populations.
In the context of corporate UI specification processes as outlined in Section 1, model-
ing the UI also requires the integration of the discipline of Business-Process Modeling
(BPM). The interaction layer - as interface between system and user - is the area
where HCI, SE and BPM are required to collaborate in order to produce high quality
UIs. As actors come from all three disciplines, the question is which modeling nota-
tions are adequate to extend and align their vocabulary.

Human-Computer
Interaction

High-Fi Prototype

Low-Fi Prototype,
Conceptual Model

UI Storyboard,
Navigation Map

Flow Chart,
Process Model

Task Map

Task Case

Personas, User
Scenario, User Role

Activity, Information,
Interaction Scenario

Software Engineering

Pilot System

Essential UI Prototype

Use Case Storyboard,
UI Flow Diagram

Activity, Robustness
& Sequence Diagram

Use Case Diagram

(Essential) Use Case

User Story, User Role,
Personas

Usage Scenario

Business Process
Modelling

Power Point Prototype

Mockups

UI Slide Show,
UI Storyboard

Activity, Sequence,
& Data Flow Diagram

Use Case Diagram

Business Use Case

Personas, Business
Roles

Business Vision

Identified Common
Denominator

Detailed Prototype

Abstract Prototype

UI Storyboard

Flow Chart, Activity &
Data Flow Diagram

Use Case Diagram,
Task Map

(Essential) Use Case

Personas,
User (Role) Map

Scenario (Map)

F
ro

m
 te

xt
 to

 v
is

ua
l U

I
ex

te
rn

al
iz

at
io

n

Extension and interoperability of modelling languages towards a common denominator

Fig. 1. Towards a common denominator in interdisciplinary modeling

As we found in our previous research, agile methods are close to HCI practice [17]
and therefore represent a promising pathfinder for a course of action common to all
three disciplines. Holt [12] presents a BPM approach that is based on UML class, ac-
tivity, sequence and use-case notations. Ambler based his agile version of the Ra-
tional Unified Process (RUP) on a similar, but less formal, BPM approach [1]. In

 Multi-fidelity User Interface Specifications 49

general, agile approaches already exist in HCI [17], BPM [1] and SE [3] and we can
define a common denominator for all three disciplines (Fig. 1). Our goal is to keep
this denominator as small as possible. We filter out models that are too difficult to be
understood by every actor. We do not consider models that are more commonly used
to support actual implementation or that have been identified as mostly unnecessary
by Agile Modeling [1]. Despite an agile freedom in terms of formality, IT suppliers
can nevertheless deduce the later structure of the UI much better from the resulting
interactive UI specification than they can from Office-like documents. We integrate
different levels of modeling abstraction to visualize the flow from initial abstract arti-
facts to detailed prototypes of the interaction layer. On the vertical axis in Fig. 1 we
distinguish the models according to their level of abstraction (or level of fidelity).
Models at the bottom are more abstract (i.e. text-based, pictorial), whereas those at
upper levels become more detailed with regard to the specification of the UI. On the
horizontal axis, we identify appropriate models for UI specification. Accordingly, we
differentiate between the grade of formality of the models and their purpose and ex-
pressivity. The models with a comparable right to exist are arranged at the same level.
At each stage we identify a common denominator for all three disciplines as a part of
the interactive UI specification evolving thereby.

3.1 Text-Based Notations of Needs and Requirements: Personas and Scenarios

For describing users and their needs, HCI recognizes user profiles, (user) scenarios
[23], role models [9], and personas [5]. Roles and personas are also known in SE and
BPM and are therefore appropriate for initial user-needs modeling (see Fig. 1). As an
interdisciplinary modeling language, research suggests scenarios [2] - known as user
stories (light-weight scenarios) in agile development [3]. In SE, scenarios – as a se-
quence of events triggered by the user – are generally used for requirements gathering
and for model checking. Such a scenario is used to identify a thread of usage for the
system to be constructed and to provide a description of how the system will be used.
HCI applies scenarios to describe in detail the software context, users, user roles, ac-
tivities (i.e., tasks), and interaction for a certain use-case. BE uses scenario-like narra-
tions to describe a business vision, i.e. a guess about users (customers), their activities
and interests. Starting up INSPECTOR, the user can create a scenario map to relate all

Fig. 2. Scenario map as entry stage to the modeling process (left); scenario info-bubble (right)

50 T. Memmel, J. Vanderdonckt, and H. Reiterer

scenarios that will be modeled (Fig. 2, left). The user can first describe a single sce-
nario in a bubble shape (Fig. 2, right): INSPECTOR provides a build-in text editor
with appropriate templates and enables the direct integration of existing requirement
documents into its repository. Later, the user will zoom-in and fill the scenario shape
with graphical notations and UI design.

3.2 Graphical Notations: Requirements, Usage and Behavior Modeling

Entering this stage, INSPECTOR supports the important process of translating needs
into requirements (see Fig. 1). Role maps [9] help to relate user roles to each other.

Fig. 3. Use-Case Diagram (left); Activity Diagram (right) with logic of single use case

Fig. 4. UI storyboard with UI design and models (magnified areas for illustration)

 Task Map

 UI Storyboard

 Overview

 Abstract Design

 Multi-fidelity User Interface Specifications 51

Although different in name, task cases (HCI), essential-use cases (SE), and business-
use cases (BPM) can all be expressed in a classical use-case notation (Fig. 3, left).
Moreover, use-case diagrams (SE, BE) overlap with use-case and task maps (HCI) [9].
The latter also help to separate more general cases from more specialized (essential)
sub-cases. We considered different models for task and process modeling and, follow-
ing [1], we again selected related modeling languages (see Fig. 1). Activity diagrams
(Fig. 3, right) are typically used for business-process modeling, for modeling the logic
captured by a single use-case or usage scenario, or for modeling the detailed logic of a
business rule. They are the object-oriented equivalent of flow charts and data-flow dia-
grams. They are more formal than the models HCI experts are usually familiar with,
but they therefore extend the expert’s competency in interdisciplinary modeling. Data-
flow diagrams model the flow of data through the interactive system. With a data-flow
diagram, actors can visualize how the UI will operate depending on external entities.
Typical UI storyboards we know from HCI [18] serve as the interface layer between
needs and requirement models and the UI design (Fig. 1, Fig. 4).

3.3 UI Prototyping and Simulation: Modeling Look and Feel

Prototypes are already established as a bridging technique for HCI and SE [6,24]. HCI
mainly recognizes them as an artifact for iterative UI design. Avoiding risk when
making decisions that are difficult to retract is a reason why prototyping is also im-
portant for business people. Accordingly, we chose prototypes as a vehicle for ab-
stract UI modeling. They will help to design and evaluate the UI at early stages and
they support traceability from models to design. Alternate and competing designs as
well as revised ones can all be kept in the specification landscape for later reference
and for a safe-keeping of the design rationale. The visually most expressive level is
the high-fidelity UI prototyping layer (Fig. 5, left). It serves as the executable, interac-
tive part of UI specification and makes the package complete (see Fig. 1). From here
on, the actor can later explore, create and change models by drilling down to the rele-
vant area of the UI specification. Moreover, programmers can pop-up the interactive
UI specification to get guidance on the required UI properties.

Fig. 5. INSPECTOR-made hi-fi UI design (left) in Microsoft Expression Blend (right)

52 T. Memmel, J. Vanderdonckt, and H. Reiterer

Therefore, all created UI designs can be saved in two different UIDLs that are
XML-compliant, thus demonstrating that INSPECTOR can accommodate any UIDL
in theory. On the one hand, the XAML export guarantees the reusability of the speci-
fied UIs during the development by the supplier. The XAML code can, for example,
be imported to Microsoft Expression Blend (Fig. 5, right). The XAML helps to pro-
vide simulations of the UI in a web browser such as Microsoft Internet Explorer. The
links between pages that were created with INSPECTOR then also become links in
the prototypical UI simulation. Equally important is the capability of INSPECTOR to
export the results of the process in UsiXML (www.usixml.org) [13]. In this way, it
can contribute to the early phases of needs analysis and requirements engineering: UI
designs created can be exported from INSPECTOR and imported in any other
UsiXML-compliant tool such as GrafiXML [20]. In the end, the means provided are
platform- and implementation-independent, thus making INSPECTOR compliant
with the Cameleon Reference Framework [7]. Other UIDLs could be used similarly.

3.4 Feedback and Review: Creating and Managing Annotations

In order to enable actors to attach notes to artifacts in the specification space, we have
added a feedback and review component. It can be used by actors to review the mod-
els and UI designs. Annotations can thus either be attached to objects on the canvas
freely or be linked to specific parts of a model or page (e.g., a widget). Consistent
with the ZUI interaction paradigm, the annotations can be zoomed into and accord-
ingly provide the opportunity for editing. The annotations can also be used for giving
feedback on the UI specification. When actors execute the UI simulation and explore
the underlying models, they can leave notes for the UI specification team. With color
coding, we distinguish the feedback provided with different grades of severity, rang-
ing from positive ratings (green) to critical ones (red). By summarizing the reviews of
actors in a management console, we can visualize conflicting artefacts, inconsisten-
cies and any revisions that may be needed, and we can easily support a jump zoom
navigation to the relevant models or UI designs.

3.5 Zoom-Based Traveling through the UI Specification Space

INSPECTOR is based on the metaphor of a whiteboard, which is a quite common tool
in collaborative design environments. Because of our own experience and that of oth-
ers [14,21] in developing ZUIs, INSPECTOR offers panning and zooming as major
interaction techniques. In this way, it supports the principle of focus+context princi-
ple: first, the general context is identified and when it is appropriate, we can focus on
some relevant part of the context, thus giving rise to a new context and so forth. It
therefore provides users with a feeling of diving into the information space of the UI
specification whiteboard. INSPECTOR uses [4] and the appearance of its UI is based
on a linear scaling of objects (geometric zooming) and on displaying information in a
way that is dependent on the scale of the objects (semantic zooming) [25]. Automatic
zooming automatically organizes selected objects on the UI. Animated zooming sup-
ports the user in exploring the topology of an information space and in understanding
data relationships. For switching between models and UI designs, the user can manu-
ally zoom in and out and pan the canvas. Navigating between artifacts can be an ex-
tensive task, however, if objects are widespread in terms of being some distance along

 Multi-fidelity User Interface Specifications 53

Scenario Map

Interactive UI Specification

Inspector UI design

Detailed specification design

Medium-fidelity design

Abstract canonical designPersonas, User Roles

User Role Map Use Case DiagramUse Case Diagram

Task Map

Flow Chart
Essential Use Case

Activity Diagram
Data Flow Diagram

U
I

S
t
o
r
y
b
o
a
r
d

Fig. 7. Correlation of models and UI designs; exemplified modeling and design throughput

the three dimensions of the canvas (panning: x-axis, y-axis; zooming: z-axis). For a
much faster change of focus as well as for traceability and transparency, INSPECTOR
offers the possibility of creating links between models or elements of models (Fig. 7).
Scenarios are the initial model, whereas the UI storyboard functions as the mediator
between interconnected models and design. At early stages, for example, a user shape
can be linked to and be part of user roles, personas, and use-cases. Zooming-in on a
user shape reveals more details about the underlying personas. The use-case shapes can
be part of a superordinate task map and can be linked accordingly. Moreover, zooming
in a particular case could link to an essential use-case description and reveal more de-
tail on user and system responsibilities. At this stage, activity and data-flow diagrams
help to model the relationships of states, for example (Fig. 3). The user can link every
model to UI designs of different fidelity and vice versa. During modeling, or while
traversing relationships by panning and zooming, hints about the current zoom factor
and the current position in the information space can be given in order to avoid disori-
entation. A common way of supporting the user’s cognitive (i.e. spatial) map of the in-
formation space is an overview window (Fig. 4). In addition, INSPECTOR provides a

54 T. Memmel, J. Vanderdonckt, and H. Reiterer

tree-view explorer for switching between objects. This navigation support allows a
jump zoom into areas far removed from the current focus.

4 Expert Feedback and Usability Study

We have started to interview software and UI specification experts (n=12) from
Daimler AG in a questionnaire-based usability study. The participants were intro-
duced to INSPECTOR through a short demonstration, a video and a supplementary
text explaining the motivation for our approach. Each expert was provided with an in-
stallation of the tool and had two weeks to return his feedback by means of a ques-
tionnaire that was divided into 5 parts. The first part was designed to (1) identify the
field of activities of every respondent, (2) get an overview of the models and tools
typically applied, and (3) get an assessment of difficulties along the supply chain. The
second to fourth parts asked about INSPECTOR in terms of (1) the applicability of
the modeling notations, (2) the completeness of the UI design capabilities and their
practicability for UI evaluation, and (3) the assessment of the tool’s general usability
and the user experience provided. The fifth part asked if INSPECTOR could, in gen-
eral, improve the UI specification practice. Currently, half of the questionnaires have
been completed (n=6) and we can provide a first outline of the most important results.
So far, all respondents have stated that INSPECTOR, as a tool that combines models
with UI Design, contributes great value to their work style (average 4.83 pts; scale 1-5
pts). The added value was particularly identified in terms of an increased coherence of
models and design artifacts, whereby INSPECTOR enhances traceability and trans-
parency. But the study also highlighted some conceptual shortcomings. Some experts
stated that during the building of a UI design, INSPECTOR could be enhanced by a
contextual layer that gives the expert the chance to cross-check the design with under-
lying models. Instead of frequently jumping back and forth on the canvas, it should be
possible to temporarily visualize models and UI concurrently. We have started to de-
velop such a preview feature in order to further enhance the traceability of artefacts.

Other usability issues concerned the general interaction with the tool and were sim-
ilar to those found during a diary study. For the latter, we used INSPECTOR in an in-
teraction design lecture. Three groups of computer science and HCI students (n=8)
were asked to use the tool during a Volkswagen use-case study on the specification of
rear-seat entertainment systems. For a period of three weeks, every student wrote his
own diary to give insight into (1) the kind of models created, (2) additional tools that
were applied, (3) problems that occurred, (4) ratings of the user experience, (5) gen-
eral issues and opinions about the tool. We decided for the diary study in order to be
able to evaluate INSPECTOR over a longer period of time. Because we were inter-
ested in how the empirical results change with the duration and intensity of usage, we
preferred a long-term study to classical usability tests. In weekly workshops, we dis-
cussed the intermediary results and recorded the issues for subsequent correction. By
means of the diary study, we e.g. found that objects on the ZUI canvas occasionally
behaved inconsistently after the tool was used for several hours and an extended
amount of zoom operations had been performed. Students also reported issues with
integrated external documents (PDF, Word, etc.), when they repeatedly saved and
opened their projects. This led to an intensifying disarrangement of the XML structure

 Multi-fidelity User Interface Specifications 55

in saved project files and significantly prevented a fluent and enduring work style. It
would have been mere chance if we had identified these problems in a much shorter
lab-based usability study. That way, we were able to solve these issues quickly.
Moreover, we found that some participants firstly preferred to create the first abstract
prototypes with paper and pencil. We realized that the use of the built-in sketching
mechanism increased as soon as we provided a pen tablet as input device; like in [10].
Students were initially also not comfortable with all the notations provided and re-
quired assistance on their proper application. We addressed this issue by making a
start on including a help feature that guides users through the UI specification process
by explaining notations as well as their scope of application. In addition, we enhanced
the affordance of templates for e.g. personas or essential-use cases to ease the under-
standing of the artifacts. After all, the diary study and the upgrades resulted in an im-
provement of the feedback on the tool usability: rated with an average of 1.75pts (std.
0.46) (on a 5-point Likert scale) after the first week and 3pts (std. 0.00) after the sec-
ond, participants reviewed INSPECTOR with an average of 4.25pts (std. 0.46) at the
end of the study. A repeated-measure ANOVA revealed a significant main effect for
the rating across the weeks (F(2,14)=105.00, p<0.001). Furthermore the differences
between each week are also very significant statistically (week 1 vs. week 2:
F(1,7)=58.33, p<0.001; week 2 vs. week 3: F(1,7)=58.33, p<0.001).

5 Summary and Outlook

In this paper, we have introduced INSPECTOR, a collaborative design tool for shar-
ing UI designs at various levels of fidelity in order to match the requirements that
multiple actors may rely on various inputs and formats. The notion of multi-fidelity
has already been proved feasible in UI prototyping [10] and is then extended to UI re-
quirements here in a ZUI. Based on our experience in UI specification and design, we
have come to the conclusion that the typical methods and tools available are not ade-
quate. UI tools must support not only the “hard” aspects, but also the “soft” aspects of
UI development to support the delivery of usable and innovative systems in the future
[8]. These include support for creativity and improvisation. With our experimental
tool-support, actors are supported in applying informal models they are familiar with,
and are given the opportunity of UI prototyping with different fidelities. Being logi-
cally linked, transitions from abstract to detailed artifacts increase the transparency of
design decisions and enhance the traceability of dependencies. This improves com-
munication, consistency, and lastly, the necessary understanding of the overall prob-
lem space that has to be made accessible through an innovative UI. Based on a ZUI
approach, our INSPECTOR tool integrates and innovatively interconnects the re-
quired artifacts in an interactive UI specification that serves as a living repository of
the design rationale. With our approach, we focus on actors in charge of the concep-
tualization, and particularly the specification, of UIs. We therefore do not support the
automatic generation of the final UI like in [7], but the exchangeability of the overall
specification as well as the sophisticated UI designs in machine-readable format. We
will continue to enhance our tool in order to make it a fully capable and scalable al-
ternative to the tool-landscape applied in current industrial practice.

56 T. Memmel, J. Vanderdonckt, and H. Reiterer

References

1. Ambler, S.W.: Agile Modeling. John Wiley & Sons, New York (2002)
2. Barbosa, S.D.J., Paula, M.G.: Interaction Modelling as a Binding Thread in the Software

Development Process. In: Proc. of the ICSE 2003 Workshop on bridging the gaps between
software engineering and human-computer interaction SEHCI 2003, IFIP, May 3-4, 2003,
pp. 84–91 (2003)

3. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (1999)
4. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit Design for Interactive Structured Graph-

ics. IEEE Transactions on Software Engineering 30(8), 535–546 (2004)
5. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-

gan Kaufmann, San Francisco (1998)
6. Blomkvist, S.: Towards a model for bridging agile development and user-centered design.

In: Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.) Human-centered software engineering
– Integrating usability in the development process. Human-computer Interaction Seires,
pp. 219–244. Springer, Berlin (2005)

7. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

8. Campos, P., Nunes, N.: Towards useful and usable interaction design tools: CanonSketch.
Interacting with Computers 19(5-6), 597–613 (2007)

9. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to Models and
Methods of Usage-Centered Design. Addison-Wesley, Reading (1999)

10. Coyette, A., Kieffer, S., Vanderdonckt, J.: Multi-Fidelity Prototyping of User Interfaces.
In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007.
LNCS, vol. 4663, pp. 149–162. Springer, Heidelberg (2007)

11. Elnaffar, S., Graham, N.C.: Semi-Automated Linking of User Interface Design Artifacts.
In: Proc. of 3rd Int. Conf. CADUI 1999, pp. 127–138. Kluwer Academic Publisher,
Dordrecht (1999)

12. Holt, J.: A Pragmatic Guide to Business Process Modelling. British Computer Society,
United Kingdom (2005)

13. Limbourg, Q., Vanderdonckt, J.: Addressing the Mapping Problem in User Interface De-
sign with UsiXML. In: Proc. of 3rd Int. Workshop on Task Models and Diagrams for user
interface design TAMODIA 2004, pp. 155–163. ACM Press, New York (2004)

14. Lin, J., Landay, J.A.: Damask: A Tool for Early-Stage Design and Prototyping of Multi-
Device User Interfaces. In: Proc. of the 8th Int. Conf. on Distributed Multimedia Systems,
San Francisco, pp. 573–580 (2002)

15. McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., Vera, A.: Breaking the Fidelity Bar-
rier: An Examination of our Current Characterization of Prototypes and an Example of a
Mixed-Fidelity Success. In: Proc. of CHI 2006, pp. 1233–1242. ACM Press, New York
(2006)

16. Memmel, T., Bock, C., Reiterer, H.: Model-driven prototyping for corporate software
specification. In: Harning, M.B., Gulliksen, J. (eds.) Proc. of the Engineering Interactive
Systems Conference EIS 2007, Salamanca, March 22-24, 2007. Springer, Berlin (2007)

17. Memmel, T., Gundelsweiler, F., Reiterer, H.: Agile Human-Centered Software Engineer-
ing. In: Proc. of the 21st BCS Conf. on Human-Computer Interaction HCI 2007, pp. 167–
175 (2007)

 Multi-fidelity User Interface Specifications 57

18. Memmel, T., Reiterer, H., Ziegler, H., Oed, R.: Visual Specification as Enhancement of
Client Authority in Designing Interactive Systems. In: Roese, K., Brau, H. (eds.) Proc. of
the 5th Workshop of the German Chapter of the Usability Professionals Association, pp.
99–104. Frauenhofer IRB Verlag, Stuttgart (2007)

19. Metzker, E., Reiterer, H.: Evidence-Based Usability Engineering. In: Proc. of the 4th Int.
Conf. on Computer-Aided Design of UIs CADUI 2002, pp. 323–336. Kluwer Acad.,
Dordrecht (2002)

20. Michotte, B., Vanderdonckt, J.: GrafiXML, A Multi-Target User Interface Builder based
on UsiXML. In: Proc. of 4th Int. Conf. on Autonomic and Autonomous Systems ICAS
2008, Gosier, March 16-21, 2008. IEEE Comp. Soc. Press, Los Alamitos (2008)

21. Newman, N.W., Jason, J.L., Hong, I., Landay, J.A.: DENIM: An Informal Web Site De-
sign Tool Inspired by Observations of Practice. J. Human-Comp. Int. 18(3), 259–324
(2003)

22. Petrie, J.N., Schneider, K.A.: Mixed-fidelity Prototyping of User Interfaces. In: Proc. of
DSV-IS 2006, pp. 199–212. Springer, Heidelberg (2006)

23. Rosson, M.B., Carroll, J.M.: Usability Engineering: scenario-based development of human
computer interaction. Morgan Kaufmann, San Francisco (2002)

24. Sutcliffe, A.G.: Convergence or competition between software engineering and human
computer interaction. In: Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.) Human-centered
software engineering – Integrating usability in the development process. Human-Computer
Interaction Series, pp. 71–84. Springer, Berlin (2005)

25. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Fran-
cisco (2004)

26. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM Transac-
tions on Software Engineering and Methodology 6(1), 1–30 (1997)

	Multi-fidelity User Interface Specifications
	Introduction and Motivations
	Shortcomings of, and Changes Desired in Current UI Specification Practice
	Tool Support That Is Adequate for the UI Design Problem

	Related Work
	The Common Denominator in UI-Related Modeling
	Text-Based Notations of Needs and Requirements: Personas and Scenarios
	Graphical Notations: Requirements, Usage and Behavior Modeling
	UI Prototyping and Simulation: Modeling Look and Feel
	Feedback and Review: Creating and Managing Annotations
	Zoom-Based Traveling through the UI Specification Space

	Expert Feedback and Usability Study
	Summary and Outlook
	References

