
Inspector: Interactive UI Specification Tool

Thomas Memmel and Harald Reiterer

Human-Computer Interaction Group, University of Konstanz
Universitätsstrasse 10, 78457 Konstanz, Germany
E-Mail: {memmel, reiterer}@inf.uni-konstanz.de
Tel: +49 (0) 7531 – 88 35 47

Abstract When the user interface should be specified, a picture is worth a thou-
sand words, and the worst thing to do is write a natural language specification for
it. Although this practice is still common, it is a challenging task to move from
text-based requirements and problem-space concepts to a final UI design, and then
back. Especially for user interface specification, actors must frequently switch be-
tween high-level descriptions and low-level detailed screens. In our research we
found out that advanced specifications should to be made up of interconnected ar-
tefacts that have distinct levels of abstraction. With regards to the transparency
and traceability of the rationale of the specification process, transitions and de-
pendencies must be visual and traversable. For this purpose, a user interface speci-
fication method is introduced that interactively integrates interdisciplinary and in-
formal modelling languages with different levels of fidelity of user interface
prototyping. With an innovative experimental tool, we finally assemble models
and design to an interactive user interface specifications.

1. Introduction
It is generally recognised by both software practitioners and Human-Computer In-
teraction (HCI) specialists that structured approaches are required to model, spec-
ify, and build interactive systems with high usability [1]. This structure should be
reflected in the Software Development Life Cycle (SDLC). Nevertheless, in many
organizations, UI design is still an accidental or opportunistic by-product and HCI
methods are not sufficiently embedded in the overall SDLC. If they are integrated,
their contribution remains marginal, thus reducing the expected positive impact on
software quality. This reality can be explained by the fact that most Integrated De-
velopment Environments (IDEs) are inappropriate for supporting actors from dif-
ferent disciplines in designing interactive systems. Formal UI tools prevent many
actors from taking part in collaborative design if they do not have adequate
knowledge of specific terminologies. On the other hand, being too informal leads
to misunderstandings and conflicts in communication with programmers. More-
over, on further examination, many tools turn out to be more focused on require-
ments management than on providing support in extracting requirements from
user needs and translating them into good UI design. After all, despite - or perhaps

2

precisely because of - the vast functionality of many tools, the outcome often is
unsatisfactory in terms of UI design, usability and aesthetics. This is described as
the high threshold - low ceiling phenomenon of UI tools [2]. In order to easily
produce some results with reasonable efforts, an IDE should have a low threshold:
the threshold with which one can obtain a reasonably good UI should be as low as
possible. On the other hand, an IDE should have a high ceiling: the maximum
overall performance of the IDE should be as high as possible. To these two di-
mensions, one usually adds a third one: wide walls (Fig. 1). An IDE should have
walls that are as wide as possible, thus meaning that the range of possible UIs that
can be obtained via the IDE should cover as much different UIs as possible.

Fig. 1: Threshold vs ceiling vs walls for expressing the capabilities of IDEs

1.1 Actors in the UI specification process
Over the last 3 years, we observed UI development practice in the German auto-
motive industry [3;4]. As a consequence of the lack of appropriate tools, many ac-
tors tend to use tools they are familiar with and which can be categorized as being
low threshold – low ceiling – narrow walls IDEs, which has been well observed
by [2]. We distinguish between two different populations of tool-users, which can
be assigned to two different areas of corporate UI development projects: (1) Cli-
ent: Business personnel, marketers, domain experts, or HCI experts use Office-
like applications such as Word or Power Point [3] to document user needs and
context of use in order to define the problem-space. They will translate the needs
as analyzed, and their contextual conditions, into general usage requirements and
evaluate their work at several quality gates. At this stage, responsibility is typi-
cally shared with, or completely passed on to, an IT supplier. (2) Supplier: Actors

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts

UI ty
pes

Walls

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts

UI ty
pes

Walls

3

with a sophisticated IT background (e.g. programmers or designers) translate us-
age requirements into UI and system requirements, deliver prototypes and con-
clude the outcome in a UI specification. Working with UI builders, and using
more formal, precise and standardized notations, they narrow the solution space
towards the final UI.

1.2 Shortcomings of current UI specification practice
The difference between these groups of actors tends to result in a mixture of for-
mats. This makes it difficult to promote concepts and creative thinking down the
supply chain without media disruptions and loss of precision [3]. The following
negative factors therefore contribute to UI development failure:
1. The lack of a common course of action and the use of inappropriate, incom-

patible terminologies and modelling languages [5] that prevent even the
minimum levels of transparency, traceability and requirements-visualization
that would be adequate for the problem.

2. The difficulty in switching between abstract and detailed models due to a lack
of interconnectivity (compare [7]).

3. The difficulty of travelling from problem space to solution space, a difficulty
that turns the overall UI development into a black-box process.

4. The burial of mission-critical information in documents that are difficult to re-
search and have very awkward traceability. Experts are overruled when the UI
design rationale is not universally available in the corresponding prototypes.

5. The perpetuation of unrecognized cross-purposes in client and supplier com-
munication, which can lead to a premature change or reversal of UI design de-
cisions, the implications of which will not be realized until later stages.

6. The resulting misconceptions that lead to costly change requests and itera-
tions, which torpedo budgets and timeframes and endanger project goals.

Because of the immaturity of their UI development processes, industrial clients
determined on a shift of responsibility. In our research for Dr. Ing. h. c. F. Porsche
AG and Daimler AG, we found the following sticking points that tend to change
current UI specification practice: (1) Due to the strategic impact of many software
products, clients want to increase their UI-related competency in order to reflect
corporate values by high UI quality [4]. (2) Whereas conceptual modelling, proto-
typing or evaluation have always been undertaken by suppliers, the client himself
now wants to work in the solution space and therefore needs to develop the UI
specification in-house [3]. (3) The role of the supplier becomes limited to pro-
gramming the final system. The client can identify a timetable advantage from this
change, and an important gain in flexibility in choosing his suppliers. Having an
in-house competency in UI-related topics, the client becomes more independent
and can avoid costly and time-consuming iterations with external suppliers. (4) It
is nearly impossible to specify a UI with Office-like applications. The existing ac-
tors, who are nevertheless accustomed to text-based artefacts, now require new
approaches. The task of learning the required modelling languages and under-
standing how to apply these new tools must not be an unreasonably difficult one.

4

1.4 Tool support that is adequate for the problem
This cultural change must be supported by an integrating UI tool that allows the
translation of needs into requirements and subsequently into good UI design. In
Table 1 we present a condensed overview of relevant UI tool requirements. In this
paper we present both a set of models and a corresponding tool named
INSPECTOR, still under development, which are designed to support interdisci-
plinary teams in gathering user needs, translating them into UI-related require-
ments, designing prototypes of different fidelity and linking the resulting artefacts
to an interactive UI specification. The term interactive refers to the concept of
making the process visually externalized to the greatest extent possible. This con-
cerns both the artefacts and the medium of the UI specification itself. The latter
should no longer be a text-based document, but a running simulation of how the
UI should look and feel. Accordingly, we extend the meaning of UI prototypes to
also include the provision of access to information items below the UI presentation
layer. Being interactively connected, all of the ingredients result in a compilation
of information items that are necessary to specify the UI (Table 2). In Section 2
we link our research to related work. Section 3 presents the common denominator
in modelling that we developed. We explain how our tool, called INSPECTOR,
will utilize the resulting interconnected hierarchy of notations. We illustrate how
abstract and detailed designs can be easily created and also exported in machine-
readable XML formats such as XAML or UsiXML [22].

Table 1: Requirements for UI tools for interactive UI specification; on the basis of [3;6;7]

Purpose/Added Value Tool Requirement
Traceability of design rationale; transparency of
translation of models into UI design

Switching back and forth between different
(levels of) models

Smooth transition from problem-space concepts
to solution space

Smooth progression between abstract and de-
tailed representations

HCI experts can build abstract and detailed pro-
totypes rapidly

Designing different versions of a UI is easy
and quick, as is making changes to it

Provide support for design assistance and crea-
tive thinking for everybody; all kinds of actors
can proactively take part in the UI specification

Concentration on a specific subset of model-
ling artefacts, which can be a UML-like nota-
tion or one that best leverages collaboration

The early detection of usability issues prevents
costly late-cycle changes

Allowing an up-front usability evaluation of
look and feel; providing feedback easily

Table 2: Main differences between prototypes and interactive UI specifications

Interactive UI Prototypes Interactive UI Specifications
Vehicle for requirements analysis Vehicle for requirements specification
Exclusively models the UI layer; may be incon-
sistent with specification and graphical notations

Allows drill down from UI to models; relates
UI to requirements and vice versa

Either low-fidelity or high-fidelity Abstract first, specification design later
Supplements text-based specification Widely substitutes text-based specification
Design rationale saved in other documents Incorporates design knowledge and rationale

5

2. Related Work
Campos and Nunes presented the tools CanonSketch and TaskSketch [7]. Canon-
Sketch was the first tool that used canonical abstract prototypes and an UML-like
notation, supplemented by a functioning HTML UI design layer. TaskSketch is a
modelling tool that focuses on linking and tracing use cases, by means of which it
significantly facilitates development tasks with an essential use-case notation. Al-
together, TaskSketch provides three synchronized views: the participatory view
uses a post-it notation to support communication with end-user and clients, the
task-case view is targeted towards designers and is a digital version of index cards
(well-known artefacts of usage-centred or agile developers) and the UML activity
diagram view is adequate for software engineers. As we will see in this paper, we
closely concur with the concepts of these tools, but our approach differs in some
important areas. Firstly, and in contrast to CanonSketch, we also support detailed
UI prototyping because we found that the high-fidelity externalization of design
vision is especially important in corporate UI design processes. Secondly, we pro-
vide more ways of modelling. INSPECTOR integrates earlier text-based artefacts,
as well as task models and interaction diagrams. Some of them are also grounded
in usage-centred design, but we focused on agile models as they proved to be
helpful in bridging the gaps between the disciplines (see Section 3).

The tools DAMASK [8] and DENIM [9] used a Zoomable User Interface
(ZUI) approach for switching between different levels of detail through a visual
drill-down process. Based on our own experience with ZUIs, we followed a con-
sistent implementation of this technique. Calvary et al. [10] presented the
CAMELEON reference framework, which proposes four levels of abstraction for
UI tools: tasks and concepts, abstract UI design, detailed UI design, and the final
UI. We will see that INSPECTOR supports this framework very well by the nature
of the layers of abstraction used and the ZUI approach applied. However, as
INSPECTOR is focused on UI specification rather than on actual UI development,
it supports the final UI stage by means of UIs to other tools in the supply chain.

With respect to DAMASK and DENIM, INSPECTOR borrowed the idea of us-
ing animations to support transitions between contexts of use: when an actor needs
to switch from one view to another, INSPECTOR applies a zoom-in, zoom-out
technique so as to preserve continuity between the contexts of use, which has been
largely demonstrated as a positive impact in SDLC [8].

3. A Common Denominator In UI-related Modelling
An advanced IDE must be able to support all actors in actively participating in the
UI specification process (Table 1). This requires it to deploy modelling techniques
that can be used easily by everybody. We know that the Unified Modelling Lan-
guage (UML) is a weak means of modelling the UIs of interactive systems [11].
As well as its shortcomings in describing user interactions with the UI, its notation
also overwhelms most actors with too much (and mostly unnecessary) detail [12].
Designing UIs is an interdisciplinary assignment and many actors might be left
behind due to any formality. For instance, UML is like Office-like artefacts in be-
ing inadequate for the specification of the look and feel of interactive UIs.

6

3.1 Bridging the gaps with Agile Modelling
The identification of adequate means of modelling for UI specification is very
much related to the ongoing discussion on bridging the gaps between HCI and SE.
This discussion is also propelled by the very difference in the way experts from
both fields prefer to express themselves in terms of formality and visual externali-
zation. HCI and SE are recognized as professions made up of very distinct popula-
tions. In the context of corporate UI specification processes as outlined in Section
1, modelling the UI also requires the integration of the discipline of business-
process modelling (BPM). The interaction layer - as interface between system and
user - is the area where HCI, SE and BPM are required to collaborate in order to
produce high quality UIs. As actors in corporate UI specification processes come
from all three disciplines, the question is which modelling notations are adequate
to extend and align their vocabulary. As we found in our previous research, agile
methods are close to HCI practice [13] and therefore represent a promising path-
finder for a course of action common to all 3 disciplines. Holt [14] presents a
BPM approach that is based on UML class, activity, sequence and use-case nota-
tions. Ambler based its agile version of the Rational Unified Process (RUP) on a
similar, but less formal, BPM approach [15]. In general, agile approaches already
exist in HCI [13], BPM [15] and SE [16] and we can define a common denomina-
tor for all three disciplines. We keep this denominator as small as possible. We fil-
ter out models that are too difficult to be understood by every actor. We do not
consider models that are more commonly used to support actual implementation
or that have been identified as mostly unnecessary by Agile Modelling [12, 15]. IT
suppliers can deduce the structure of the UI much better from the resulting interac-
tive specification than they can from Office-like documents.

Human-Computer
Interaction

High-Fi Prototype

Low-Fi Prototype,
Conceptual Model

UI Storyboard,
Navigation Map

Flow Chart,
Process Model

Task Map

Task Case

Personas, User
Scenario, User Role

Activity, Information,
Interaction Scenario

Software Engineering

Pilot System

Essential UI Prototype

Use Case Storyboard,
UI Flow Diagram

Activity, Robustness &
Sequence Diagram

Use Case Diagram

(Essential) Use Case

User Story, User Role,
Personas

Usage Scenario

Business Process
Modelling

Power Point Prototype

Mockups

UI Slide Show,
UI Storyboard

Activity, Sequence,
& Data Flow Diagram

Use Case Diagram

Business Use Case

Personas, Business
Roles

Business Vision

Identified Common
Denominator

Detailed Prototype

Abstract Prototype

UI Storyboard

Flow Chart, Activity &
Data Flow Diagram

Use Case Diagram,
Task Map

(Essential) Use Case

Personas,
User (Role) Map

Scenario (Map)

Fr
om

 te
xt

 to
 v

is
ua

l U
I e

xt
er

na
liz

at
io

n

Extension and interoperability of modelling languages towards a common denominator

Fig. 2: Towards a common denominator in interdisciplinary UI-related modelling

We integrate different levels of modelling abstraction to visualize the flow from

7

initial abstract artefacts to detailed prototypes of the interaction layer. On the ver-
tical axis in Fig. 2 we distinguish the models according to their level of abstrac-
tion. Models at the bottom are more abstract (i.e. text-based, pictorial), whereas
those at upper levels become more detailed with regard to the specification of the
UI. On the horizontal axis, we identify appropriate models for UI specification.
Accordingly, we differentiate between the grade of formality of the models and
their purpose and expressivity. The models with a comparable right to exist are ar-
ranged at the same level. At each stage we identify a common denominator for all
three disciplines as a part of the thereby evolving interactive UI specification.

3.2 Text-based notations of needs and requirements: Personas and scenarios
Text-based notations can be used at any stage to document early usability attrib-
utes (usability and user experience goals, constraints, etc) with INSPECTOR’s in-
formation bubbles (Fig. 3, left). For describing users and their needs, HCI recog-
nizes user profiles, (user) scenarios [17], role models [18], and personas [19].
Roles and personas are also known in SE and BPM and are therefore appropriate
for initial user-needs modelling. As an interdisciplinary modelling language, re-
search suggests scenarios [20] - known as user stories (light-weight scenarios) in
agile development [16]. In SE, scenarios – as a sequence of events triggered by the
user – are generally used for requirements gathering and for model checking.

Fig. 3: Scenario map as entry stage to the modelling process (left); scenario info-bubble (right)

Such a scenario is used to identify a thread of usage for the system to be con-
structed and to provide a description of how the system will be used. HCI applies
scenarios to describe in detail the software context, users, user roles, activities (i.e.
tasks), and interaction for a certain use-case. BE uses scenario-like narrations to
describe a business vision, i.e. a guess about users (customers), their activities and
interests. Starting up INSPECTOR, the user can create a scenario map that relates
all scenarios that will be modelled (Fig. 3, left). The user can first describe a single
scenario in a bubble shape (Fig. 3, right). For this purpose, INSPECTOR provides
a build-in text editor with according templates and enables the direct integration of
existing requirement documents into its repository. Later, the user will zoom-in
and fill the scenario shape with graphical notations and UI design (see Section
3.3ff).

 - Scenario info-bubble

 - Scenario shape

8

3.3 Graphical notations: requirements, usage and behaviour modelling

Fig. 4: Use-Case Diagram (left); Activity Diagram (right) with logic of single use case

Fig. 5: UI storyboard with UI design and models; magnified areas show embedded artefacts

Entering this stage, the user needs artefacts that support the important process of
translating needs into requirements. Role maps [18] help to relate created Personas
to each other (Fig 4, left). Although different in name, task cases (HCI), essential-
use cases (SE), and business-use cases (BPM) can be created in a classical use-
case notation (Fig. 4, left). Moreover, use-case diagrams (SE, BE) overlap with
use-case and task maps (HCI) [18]. The latter also help to separate more general
cases from more specialized (essential) sub-cases. We considered different models
for task and process modelling and, following Ambler [12;15], we again selected

 Task Map

 UI Storyboard

 Overview

 Abstract Design

Personas

9

related modelling languages. Activity diagrams (Fig. 4, right) are typically used
for business-process modelling, for modelling the logic captured by a single use-
case or usage scenario, or for modelling the detailed logic of a business rule. They
are the object-oriented equivalent of flow charts and data-flow diagrams. Data-
flow diagrams model the flow of data through the interactive system. With a data-
flow diagram, actors can visualize how the UI will operate depending on external
entities. For the storyboard layer we decided to keep the typical UI storyboards we
know from HCI [19]. The storyboard serves as interface layer between needs and
requirement models and the UI design (Fig. 5).

3.4 UI prototyping and simulation: modelling look and feel
Prototypes are already established as a bridging technique for HCI and SE [11,
21]. HCI mainly recognizes them as an artefact for iterative UI design. Avoiding
risk when making decisions that are difficult to retract is a reason why prototyping
is also important for business people. Accordingly, we chose prototypes as a vehi-
cle for abstract UI modelling. They will help to design and evaluate the UI at early
stages and they support traceability from models to design. Alternate designs can
be maintained in the specification landscape to safeguard the design rationale. UI
elements can be assembled to templates in order to ease and speed up the design
process. The visually most expressive level is the high-fidelity UI prototyping
layer (Fig. 6, left). It serves as the executable, interactive part of the UI specifica-
tion and makes the package complete. From this point, the actor can then explore,
create and change models by drilling down to the relevant area of the UI specifica-
tion. Moreover, programmers can pop-up the interactive UI specification to get
guidance on the required UI properties. Therefore, all UI designs that have been
created can be saved in two XML formats. On the one hand, the XAML export
guarantees the reusability of the specified UIs during the development by the sup-
plier. The XAML code can, for example, be imported to MS Expression Blend
(Fig. 6, right). The XAML helps to provide simulations of the UI in a web browser
such as Microsoft Internet Explorer. On the other hand, as a member of the
UsiXML supply chain, INSPECTOR can contribute to the early phases of needs
analysis and requirements engineering. With its UI design layer, INSPECTOR can
also be compared to tools such as GrafiXML [22].

Fig. 6: INSPECTOR-made hi-fi UI design (left) in Microsoft Expression Blend (right)

10

3.5 Travelling through the UI specification process with INSPECTOR

INSPECTOR is based on the metaphor of a whiteboard, which is a very common
tool in collaborative design environments. Basically, actors can therefore apply the
models and design capabilities of INSPECTOR in arbitrary order along the UI
specification process. However, the scenario map is very well suited to work on
early assignments of UI specification processes. Usability and user-experience
goals, business and design vision as well as reusable requirements can be captured
within the information bubbles at the scenario layer. At this initial stage, problem
scenarios can be textually documented. They will be enriched by concrete arte-
facts at the UI storyboard layer, which functions as the mediator between inter-
connected models and design. It encapsulates the collection of linked and interre-
lated artefacts by means of panning and zooming as major interaction techniques
[8, 9]. This provides actors with a feeling of diving into the information space of
the UI specification whiteboard. The appearance of INSPECTOR’s UI is based on
a linear scaling of objects (geometric zooming) and on displaying information in a
way that is dependent on the scale of the objects (semantic zooming) [23]. Auto-
matic zooming automatically organizes selected objects on the UI. Animated
zooming supports the user in exploring the topology of an information space and
in understanding data relationships. For switching between models and UI de-
signs, the user can manually zoom in and out and pan the canvas. During user
modelling, for example, a user shape can be linked to, and be part of, user roles,
personas, and use-cases. Zooming-in on a user shape reveals more details about
the underlying personas. The use-case shapes can be part of a superordinate task
map and can be linked accordingly (Fig. 7). Moreover, zooming in a particular
case could link to an essential use-case description and reveal more detail on user
and system responsibilities. At this stage, activity and data-flow diagrams help
during interaction modelling. The user can link every model to UI designs of dif-
ferent fidelity and vice versa (Fig. 7). During modelling, or while traversing rela-
tionships by panning and zooming, hints about the current zoom factor and the
current position in the information space can be given in order to avoid disorienta-
tion. A common way of supporting the user’s cognitive (i.e. spatial) map of the in-
formation space is an overview window (Fig. 5). Navigating between artefacts can
be an extensive task, however, if objects are widespread in terms of being some
distance along the three dimensions of the ZUI canvas. For a much faster naviga-
tion, actors can switch between artefacts with a tree-view explorer that allows a
jump zoom into areas far removed from the current user focus. In order to support
the assessment of the UI specification quality, we are working on a feedback com-
ponent for INSPECTOR. Annotations can be attached to any canvas object. They
will be used to review requirements models, to integrate results of UI evaluation
studies or to incorporate notes about trade-offs or design decisions. Annotations
will be accessible through a management component, which allows a direct zoom-
navigation to the artefacts concerned. Equally important for design rationale, the
feedback will also be stored in the UI specifications such as XAML, UsiXML.

11

Fig. 7: Exemplified modelling and design throughput with INSPECTOR

4. Summary and Outlook
Based on our experience in UI specification and design, we have come to the con-
clusion that the typical methods and tools available are not adequate. With
INSPECTOR, actors are supported in applying informal models they are familiar
with, and are given the opportunity of UI prototyping with different fidelities. Be-
ing logically linked, transitions from abstract to detailed artefacts increase the
transparency of design decisions and enhance the traceability of dependencies.
This improves communication, consistency, and lastly, the necessary understand-
ing of the overall problem space that has to be made accessible through an innova-
tive UI. Based on a ZUI approach, INSPECTOR integrates and innovatively inter-
connects the required artefacts in an interactive UI specification that provides
good support for roundtrip engineering at any design stage. Some evaluation stud-
ies [24] give us reasons for enhancing INSPECTOR to make it an innovative and
fully capable alternative to the tool-landscape found in current industrial practice.

References
1. E. Metzker, H. Reiterer (2002): Evidence-Based Usability Engineering. In Proceed-

ings. of the CADUI 2002: 323-336
2. P. Campos, N. Nunes (2004): Canonsketch: a User-Centered Tool for Canonical Ab-

stract Prototyping. In Proc. of 11th International Workshop on Design, Specification

12

and Verification of Interactive Systems, Springer: 146-163
3. T. Memmel, C. Bock, H. Reiterer (2007): Model-driven prototyping for corporate

software specification, In Proc. of the EIS’2007. Springer, 2008, to appear.
4. T. Memmel, H. Reiterer, H. Ziegler, R. Oed (2007): Visual Specification As En-

hancement Of Client Authority In Designing Interactive Systems. In Proc. of the 5th
Workshop of the German Chapter of the Usability Professionals Association, Weimer,
Germany. In: Kerstin Roese, Henning Brau: Usability Professionals 2007, Frauenhofer
IRB Verlag, Stuttgart, 99-104

5. P. Zave, M. Jackson (1997): Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6, 1 (1997) 1-30

6. N. J. Nunes, P. Campos (2004): Towards Usable Analysis, Design and Modeling
Tools. In Proc. of MBUI’2004, CEUR Workshop Proceedings, Vol. 103.

7. P. Campos, N. Nunes (2006): Principles and Practice of Work Style Modeling:
Sketching Design Tools. In Proc. of Human-Work Interaction Design. Springer

8. J. Lin, James A. Landay (2002): Damask: A Tool for Early-Stage Design and Proto-
typing of Multi-Device User Interfaces. In Proc. of the 8th International Conference
on Distributed Multimedia Systems, San Francisco: 573-580

9. M. W. Newman, J. L. Jason, I. Hong, J. A. Landay (2003), DENIM: An Informal Web
Site Design Tool Inspired by Observations of Practice. HCI, 18(3): 259-324

10. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt
(2003): A Unifying Reference Framework for Multi-Target User Interfaces. In Inter-
acting with Computer 15(3): 289–308

11. G. Sutcliffe (2005): Convergence or competition between software engineering and
human computer interaction, In: Human-centered software engineering – integrating
usability in the development process, Springer: 71-84

12. Scott W. Ambler (2004): The Object Primer - Agile Model-Driven Development with
UML 2, Cambridge University Press

13. T. Memmel, T., F. Gundelsweiler, H. Reiterer (2007): Agile Human-Centered Soft-
ware Engineering, In Proc. of the 21st BCS-HCI, 167-175

14. Jon Holt (2005): A Pragmatic Guide To Business Process Modelling, British Com-
puter Society, United Kingdom

15. Scott W. Ambler (2002): Agile Modeling (John Wiley & Sons, NY, 2002)
16. K. Beck (1999), Extreme Programming Explained, Addison-Wesley
17. M. B. Rosson, J. M. Carroll (2002), Usability Engineering: scenario-based develop-

ment of human computer interaction, Morgan Kaufmann, San Francisco
18. L. L. Constantine, L. A. D. Lockwood (1999) Software for Use: A Practical Guide to

Models and Methods of Usage-Centered Design, Addison-Wesley
19. H. Beyer, K. Holtzblatt (1998): Contextual Design: Defining Customer-Centered Sys-

tems, Morgan Kaufmann
20. S.D.J. Barbosa, M.G. Paula (2003): Interaction Modelling as a Binding Thread in the

Software Development Process, In Proc. of the workshop on bridging the gaps be-
tween software engineering and human-computer interaction, Oregon, USA

21. S. Blomkvist (2005): Towards a model for bridging agile development and user-
centered design. In: Human-centered software engineering – integrating usability in
the development process, Springer, 219-244

22. S. Lepreux, J. Vanderdonckt, B. Michotte (2006): Visual Design of User Interfaces by
(De)composition, In. Proc. of DSV-IS'2006, Vol. 4323, Springer, Berlin, 157-170.

23. Ware (2004): Information Visualization: Perception for Design, Morgan Kaufmann,
San Francisco

24. T. Memmel, J. Vanderdonckt, H. Reiterer (2008): Multi-Fidelity User Interface Speci-
fications. In Proc. of the DSV-IS 2008, to appear

