
23J.A. Gallud et al. (eds.), Distributed User Interfaces: Designing Interfaces
for the Distributed Ecosystem, Human-Computer Interaction Series,
DOI 10.1007/978-1-4471-2271-5_3, © Springer-Verlag London Limited 2011

 Abstract This paper defi nes a catalog of distribution primitives for Distributed
User Interfaces. These primitives are classifi ed into four categories and represents
operations that the developers and/or the users can executes to distribute the UI.

 Keywords Distribution primitive • Catalog • Distributed user interfaces
 • Distribution operation

 3.1 Introduction

 The domain of Distributed User Interfaces (DUI) is still in evolution and there exist no
toolkit allowing the creation of DUIs. In most pieces of work, there is almost no genu-
ine DUI. There exists toolkits to create UI such as Java Swing or Microsoft Foundation
Classes, but they do not support DUIs [1] . The UI elements simply remain in their
initial context, while communicating with each other, but without redistribution. There
is some distribution of UI elements, but it is mainly predefi ned and opportunistic: no
confi guration of the distribution at run-time. In Sjölund [2] , the repartition of UI ele-
ments across the Smartphone and the TV is fi xed. It is not possible to rearrange their
distribution. Some works allow distribution at run-time but with some limitations. The
UI elements subject to this redistribution are mainly containers, such as windows or
dialog boxes. The problem is that the granularity of UI distributed elements is often
coarse-grained; it is not possible to distribute at the widget level.

 J. Melchior • J. Vanderdonckt (*)
 Louvain School of Management, Université catholique de Louvain , Louvain-la-Neuve , Belgium
 e-mail: jean.vanderdonckt@uclouvain.be

 P. Van Roy
 Louvain School of Management, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Department of Computing Science and Engineering, Université catholique de Louvain ,
 Louvain-la-Neuve , Belgium
 e-mail: peter.vanroy@uclouvain.be

 Chapter 3
 Distribution Primitives for Distributed
User Interfaces

 Jérémie Melchior , Jean Vanderdonckt , and Peter Van Roy

24 J. Melchior et al.

 In addition, they do not support replicability, i.e. when another platform comes
in the context of use, it is hard to migrate on this platform parts that have already
been transferred to other platforms.

 In Luyten [3] , there are already attempts to model the distribution. The granularity
is however limited to tasks that are predefi ned before the application starts.

 To sum up, we are looking for a way to support distribution at both design-time
and run-time with very fi ne and coarse-grained granularity and to support replicable
distribution while being compliant with the DUI goals as in [4] . This paper tends to
help understanding and managing DUI.

 3.2 Catalog of Distribution Operations

 We propose a catalog of distribution operations and a toolkit based on this catalog.

 3.2.1 Toolkit

 A toolkit has been developed upon the catalog. It creates application with the UI
separated in two-parts: the proxy and the rendering. A command line interface is
provided to allow manual redistribution at run-time, see Fig. 3.1 .

 In Fig. 3.2 , the proxy is represented as a separate part of the application than the
rendering. The fi rst keeps the state of the application and ensures the core function-
alities, while the second displays the user interface. Applications that support DUI
allow the rendering part to be distributed on other platforms while the proxy stays
on the platform where the application has been created. The toolkit works in Mozart
environment supported by Microsoft Windows operating systems (XP and newer),
Apple Mac OS X, Linux and Android. We are currently working on the full support
for Apple iOS. As Mozart is a multi-platform environment, the applications created
with this toolkit are also multi-platform. Each graphical component is described as
a record containing several keys and values. It ensures compatibility with the XML
format because the keys/values become the name/value pairs for the XML markup.
The DUI can be controlled by a command line interface, a meta-UI or even by the
applications themselves using distribution scenario. A model-based approach
closely related to the toolkit has already been described [5] . The defi nitions and
examples presented in this paper come from this paper.

 3.2.2 Defi nitions

 As observed in the related work section, the distribution logic of DUIs is often hard-
coded and is not represented explicitly, which prevents us from reasoning on how

253 Distribution Primitives for Distributed User Interfaces

distribution is operated. In order to address this issue, we now provide a catalogue
of distribution primitives that will operate on CUI models of the cluster. We fi rst
defi ne these distribution primitives in natural language, then in an Extended Backus-
Naur Form (EBNF) format. In this notation, brackets indicate an optional section,
while parentheses denote a simple choice in a set of possible values. In the follow-
ing defi nitions, we use only one widget at a time for facilitating understanding.
In the EBNF, we will use the four selector mechanism standard from W3C for CSS
for generalization to all widgets.

 Fig. 3.1 Command line interface provided by the toolkit

Application

Proxy Rendering

 Fig. 3.2 Structure of a DUI
application

26 J. Melchior et al.

 SET <Widget.property> TO {value, percentage} [ON <Platform>]: assigns a
value to a CUI widget property or a percentage of the actual value on a platform
identifi ed in a cluster. For instance, SET “pushButton_1.height” TO 10 will size the
push button to a height of 10 units while SET “pushButton_1.height” TO +10
increases its height by 10%. Note that the platform reference is optional: when it is
not provided, we assume that the default platform is used.

 DISPLAY <Widget> [AT x,y] [ON <Platform>]: displays a CUI widget at a x,y
location on a platform identifi ed in a cluster, where x and y are integer positions (e.g.,
in characters or pixels). For instance, DISPLAY “pushButton_1” AT 1,1 ON “Laptop”
will display an identifi ed push button at coordinates 1,1 on the laptop. UNDISPLAY
<Element> [AT x,y] [ON <Platform>] is the inverse operation. DISPLAY <Message>
[AT x,y] [ON <Platform>] displays a given message on a designated platform in the
cluster (mainly for user feedback in an optional console).

 COPY <Widget> [ON <SourcePlatform>] TO [<Widget>] [ON <TargetPlatform>]:
copies a CUI widget from a source platform identifi ed in a cluster to a clone on a
target platform, thus creating a new identifi er. This identifi er can be provided as a
parameter to the primitive or created automatically by the primitive to handle it.

 MOVE <Widget> TO x,y [ON <TargetPlatform>] [IN n steps]: moves a CUI
widget to a new location indicated by its coordinates x and y, possibly in a fi xed
amount of steps, on a target platform in the cluster.

 REPLACE <Widget1> BY <Widget2>: replaces a CUI widget Widget1 by
another one Widget2. Sometimes the replacement widget could be determined after
a (re-)distribution algorithm, thus giving the following defi nition: REPLACE
<Widget1> BY <Algo:>. This mechanism could be applied to contents and image
transformations: images are usually transformed by local or remote algorithms
(e.g., for resizing, converting, cropping, clipping, repurposing), thus giving the
following defi nition: TRANSFORM <Image1> BY <ImageAlgo:URL>.

 MERGE <Widgets> [ON <SourcePlatforms>] TO [<Widget>] [ON
<TargetPlatform>]: merges a collection of CUI widgets from a source platform
identifi ed in a cluster into a container widget on a target platform, thus creating a
new identifi er. Again, when source and target platforms are not provided, we assume
that the default platform is used. SEPARATE is the inverse primitive. SEPARATES
<Widgets> [ON <SourcePlatforms>] TO [<Widgets>] [ON <TargetPlatforms>]:
splits a collection of CUI widgets (typically, a container) from a source platform
identifi ed in a cluster into CUI widgets on one or many target platforms.

 SWITCH <Widget> [ON <SourcePlatforms>] TO [<Widget>] [ON
<TargetPlatform>]: switches two CUI widgets between two platforms. When the
source and target platforms are equal, the two widgets are simply substituted.

 DISTRIBUTE <Elements> INTO <Containers> [BY <DistribAlgo:URL>:
computes a distribution of a series of UI Elements into a series of UI Containers,
possibly by calling an external algorithm, local or remote.

 EBNF Grammar. In order to formally defi ne the language expressing distribution
primitives, an Extended Backus Naur Form (EBNF) grammar has been defi ned.
EBNF only differs from BNF in the usage of the following symbols: “?” means that
the symbol (or group of symbols in parenthesis) to the left of the operator is optional,

273 Distribution Primitives for Distributed User Interfaces

“*” means that something can be repeated any number of times, and “+” means that
something can appear one or more times. EBNF has been selected because it is
widely used to formally defi ne programming languages and markup languages (e.g.,
XML and SGML), the syntax of the language is precisely defi ned, thus leaving no
ambiguity on its interpretation, and it is easier to develop a parser for such a
language, because the parser can be generated automatically with a compiler (e.g.,
YACC). Instances of distribution primitives are called by statements. The defi nitions
of an operation, a source, a target, a selector and some other ones are defi ned in
Figs. 3.3 and 3.4 (excerpt only). The defi nitions could be extended later to support
more operations or features.

 3.2.3 Examples

 In order to illustrate how distribution primitive could behave, we hereby provide a
series of increasingly complex examples. In Fig. 3.4 , a display of the platform by
default has been modifi ed in the following way: DISPLAY “pushButton_1” AT 5,5

statement = operation , white_space , source , white_space , ”TO” ,
white_space , target ;

 operation = "SET" | "DISPLAY" | "UNDISPLAY" | "COPY" | "MOVE" |
"REPLACE" | "TRANSFORM" | "MERGE" | "SWITCH" | "SEPARATE" |
"DISTRIBUTE";

source = selector ;
target = displays | selector , white_space , “ON” , white_space , displays ;
displays = display_platform , { “,” , display_platform}
display_platform = display , [white_space , “OF” , white_space , platform] ;
selector = identifier , { “,” , identifier } | universal ;
display = identifier ;

platform = identifier ;

 Fig. 3.3 EBNF grammar for distribution primitives (excerpt)

 Fig. 3.4 Example of a simple display primitive

28 J. Melchior et al.

ON “defaultPlatform” followed by SET “pushButton_1.label” TO “B”, thus creating
a CUI model attached to this platform.

 Distribution operations can be more complex than the example provided in
Fig. 3.4 . Here is a series of examples for the COPY primitive:

 1. COPY button_1 TO shared_display: simple copy of button_1 sent to shared_
display without specifying neither an identifi er nor a container

 2. COPY button_1 TO button_2 ON shared_display: copy button_1 on shared_
display and identify it as button_2

 3. COPY button_1 TO button_2 ON shared_display of shared_platform: the same
but we specify the shared_platform to avoid searching through all the platforms

 4. COPY button_1, button_2 TO shared_display: copy button_1 and button_2 to
shared_display in a single operation

 5. COPY button_1 TO shared_display, my_display: copy button_1 to shared_
display and also to my_display

 6. COPY button_1 TO shared_display OF shared_platform AND my_display OF
my_ipad: copy button_1 to both shared_display and my_display, specifying on
which platform is each display

 7. COPY * TO shared_display: copy all the graphical components from the current
UI to shared_display

 8. COPY ALL buttons TO shared_display: copy all buttons to shared_display
 9. COPY individuals TO shared_display: copy any individual CUI widgets to

shared_display

 The source CUI associated to these examples is reproduced in Fig. 3.5 , while the
results of the nine above copy operations are reproduced respectively in the different
regions of Fig. 3.6 .

 Fig. 3.5 Source CUI for the
COPY examples

293 Distribution Primitives for Distributed User Interfaces

 Meta-User Interface for Distribution Primitives. The distribution primitives
defi ned in the previous subsection can be called in two ways:

 1. Interactively through a meta-UI providing a command line equipped with a
command language: in this way, one can type any distribution primitive through
statements that are immediately interpreted and provide immediate feedback.
This meta-UI adheres to usability guidelines for command languages (such as
consistency, congruence, and symmetry), but does not provide for the moment
any graphical counterpart of each statement or graphical representation of the
platforms of the cluster. Actually, each platform is straightforwardly addressed at
run-time. It is of course possible to see the results of a distribution primitive
immediately by typing it by an “errors and trials” process until the right

 Fig. 3.6 Results of examples 1, 2 & 3 (top left), 4, 8 (top right), 5 & 6 (middle left), 7 (middle right),
9 (bottom)

30 J. Melchior et al.

statement is reached. Figure 3.1 reproduces a screen shot of this meta-UI, which
also serve as a tutorial to understand how to use the distribution primitives.
Indeed, any statement type in the command language can be stored in a list of
statements that could be recalled at any time.

 2. Programmatically: each statement representing an instance of a distribution
primitive can be incorporated in an interactive application in the same way since
the parser will be called to interpret it. It is therefore no longer needed to program
these primitives.

 3.3 Future Work

 These distribution primitives have been defi ned in such a way that it allows distrib-
uting any graphical widget without focusing on how the value is shared when
distributed. There are two important aspects in a User Interface: the presentation
and the behavior of the UI. The presentation part is the graphical representation of
a widget. If the widget is moved to another platform, it means that the same widget
will be displayed on the destination platform. This leads to an ambiguous solution
about the behavior. Is the widget still acting like it was on the other platform? Is the
action taking place locally (to the new platform) or globally (in the same way than
before being moved, like a remote)?

 The behavior is an important future work to keep in mind.

 3.4 Conclusion

 In this paper, we have introduced the concept of distribution primitives and a toolkit
based on them. The goal is to provide a catalog of distribution primitives as a common
base for researchers on DUIs. They now have the same set of primitives. It allows
them to share the same possibilities independently of the UI implementation.

 A toolkit based on this catalog has also been introduced and allows developers to
see the powerfulness of this catalog.

 Acknowledgments The author would like to acknowledge the support of the ITEA2-
Call3-2008026 USIXML (User Interface extensible Markup Language) European project and its
support by Région Wallone.

 References

 1. Tan, D.S., Czerwinski, M.: Effects of visual separation and physical discontinuities when
distributing information across multiple displays. In: Proceedings of INTERACT’03, pp.
252–260. IOS, Zurich (2003)

313 Distribution Primitives for Distributed User Interfaces

 2. Sjölund, M., Larsson, A., Berglund, E.: Smartphone views: building multi-device distributed
user interfaces. In: Proceedings of MobileHCI’2004, LNCS, pp. 507–511. Springer, Berlin
(2004)

 3. Luyten, K., Van den Bergh, J., Vandervelpen, C., Coninx, K.: Designing distributed user inter-
faces for ambient intelligent environments using models and simulations. Comput. Graph.
 30 (5), 702–713 (2006)

 4. Vanderdonckt, J.: Distributed user interfaces: how to distribute user interface elements across
users, platforms, and environments. In: Proceedings of Interacción’2010, pp. 3–14. AIPO,
Valencia (2010)

 5. Melchior, J., Vanderdonckt, J., Van Roy, P.: A model-based approach for distributed user inter-
faces. In: Proceedings of EICS’11, pp. 11–20. ACM, Pisa (2011)

	Chapter 3: Distribution Primitives for Distributed User Interfaces
	3.1 Introduction
	3.2 Catalog of Distribution Operations
	3.2.1 Toolkit
	3.2.2 Definitions
	3.2.3 Examples

	3.3 Future Work
	3.4 Conclusion
	References

