
Model Driven Engineering of Rich Internet Applications
Equipped with Zoomable User Interfaces

Francisco J. Martínez-Ruiz1, 2, Jean Vanderdonckt1 Juan Manuel González-Calleros1,

and Jaime Muñoz Arteaga3
1Université catholique de Louvain, Louvain School of Management, Information Systems Unit

Belgian Lab. of Computer-Human Interaction -
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{francisco.martinez, jean.vanderdonckt}@uclouvain.be
2Universidad Autónoma de Zacatecas, México

 3Universidad Autónoma de Aguascalientes, México – jmunozar@correo.uaa.mx

Abstract—The development of a Rich Internet
Application is particularly challenging because its user
interface can involve highly interactive techniques that
require substantive programming that is mostly done by
hand nowadays. This paper addresses this challenge by
introducing a model-driven engineering approach where
a zoomable user interface of such a Rich Internet
Application is obtained successively by performing the
following steps: the Computing Independent Model level
consists of modeling a task for the future interface based
on a list of canonical task types augmented by custom
tasks, each task being mapped onto a domain model; the
Platform Independent Model level consists of exploiting
the structure and the temporal operators of this task
model in order to generate one or many abstract user
interfaces that will lead in turn to concrete user interfaces
structured according to the principles of a zoomable user
interface at the Platform Specific Model level.

Keywords: Context of use, Rich Internet Application,
Ubiquitous computing, User interfaces, User Interface
Description Language, Vectorial User Interface,
Zoomable User Interface.

I. INTRODUCTION

Rich Internet Applications (RIAs) offer similar
features and capabilities to the ones available in
desktop applications, e.g., robustness, dynamic
adaptation depending on users’ profiles and
multimedia. Also, their development introduces a
series of problems. For instance, temporal constraints
in terms of loading presentation elements or
application logic (encapsulated in an ECMAScript
dialect mostly Javascript). Besides that, most of the UI
rendering is transferred to client-side [17]. In [5] a
Model Driven approach is proposed. This method
implies an iterative process of decomposition over a
hierarchy of tasks. Here, the problem that emerges in
non-trivial developments is the generation of enormous

structures where developers are disoriented by the
visual ambiguity of the repeating structures which
observation could not lead us to the recovery of
patterns nor semantic inferences. In the visualization of
large information spaces, such as the Task Tree
Diagrams (TTDs), it would be useful for a developer
being able to scale and zooming in to obtain further
details. Moreover, a developer could be interested
about similarities in a section previously seen in
another zone. This exploratory analysis could aid in an
informal visual review of TTDs in order to recover
hidden patterns or do comparisons that could be
difficult to express in textual format [3]. Therefore, the
synergy of mixing RIA development with ZUIs could
boost the early step of task definition. The rest of this
paper is organized as follows: Section 2 discuss the
state of the art in the creation of ZUIs. Section 3
introduces some theory in Task models and model
driven engineering domains. Then Section 4 covers the
description of our method over a case study (see
Section 5). And finally, Section 6 presents conclusions
and future work.

II. RELATED WORK AND PROBLEM DESCRIPTION

This section includes three subsections: first, a
review of the state of the art in the domain of ZUIs.
Second, one dedicated to match RIAs features to ZUI
ones. And third, an analysis of the problem.

A. Review of ZUIs

Zooming is utilized by users in multiple activities,
for instance in the process of reading a newspaper
since this activity includes a zooming out task (when
titles are browsed) meanwhile a zooming in task is
required in order to focus in a specific article or in
order to review in detail schematic diagrams [10]. The
benefits of ZUIs have been researched in [7]. There,

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.34

44

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.34

44

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

the amount of incorrect selections was a measure in
order to compare this approach to window based ones.
In [14] the purpose of the study was to discover in
which conditions zooming is more effective.
According to [10] one of the advantages of zooming is
the sense of location (geographical location) and object
constancy.

The use of 2D structures with the goal of displaying
hierarchies of information could be tracked to
[9].There, the goal was to display in box-like elements,
large directory structures of hard disks. Hierarchical
information structures contain two kinds of
information: first, information about the internal
organization of each node and second, the content
itself. ZUIs are a very well established study subject
and they are applicable over large information sets
(images or 3D scenarios) [3], vast collections of
categories, for instance, music titles [1]. In [12], the
idea is to combine fisheye views with compact
overviews in a calendar application for mobile devices.
Another interesting example is an interactive time-line
component which includes vertically stacked time
levels and zooming capabilities [13]. Finally, ZUIs are
developed manually with the help of APIs such as
JAZZ [6] but the task remains a complex one since the
development does not follow a model based approach.

B. RIA features related to ZUIs

RIAs are complex at the development level for
multiple reasons: (1) large number of objects has to be
included in order to model the UI presentation and
behavior. Also, (2) the management of non-traditional
interactive widgets, (3) the navigation should be fluid
and continuously animated and finally, (4) the TTDs
should include code or weight schemes in order to
support the work of developers. Note: many non-RIA
applications have similar requirements and the use of
TTDs is not exclusive of RIAs [5], [17].

C. Problem description

The explosive grow of Task tree nodes was the
earliest motivation for this research. Since the initial
step in the method [5] for developing RIAs includes
this notation (see Fig. 1). The goal of this research is
delivering: a solution with (1) Efficient Space
Utilization, (2) Interactivity, i.e., the structure should
be updatable and navigable in real time and (3) A
reduced cognitive and perceptual load for the user (see
Fig. 2). The construction of task models is not a trivial
task since it is a time consuming process. The
specification in [5] is based on ConcurTaskTree
notation [15]. This approach has multiples benefits
nevertheless there are a series of limitations: The first
limitation is the inevitable growing size of the TTD for

average projects. In current versions of the graphic tool
for ConcurTaskTree the problem is treated with the
inclusion of zooming in some of the TTD branches and
techniques such as word wrapping and fisheye [23].
But the problematic remains because icons and text
under certain size are unreadable.

D. Monotonic Diagram representation

On the other hand, current TTDs display a
monotonic nature (see Fig. 1). Trees are structured by
hierarchies of nodes where the only semantic
information to be collected is relationship between
children and parent nodes (i.e., deepness). Also, the
repetitive structure of TTDs is not semantic-aware.
That is, over a certain level of zooming the TTD
representation does not rapport any relevant
information. Finally, developers are not provided with
a mechanism for visualize whole TTD in a useful way.
Those inconveniences presented previously constitute
the reasons to propose an alternative TTD
representation (see Fig. 2).

Figure 1. Example of a TTF with four levels.

Figure 2. Example in ZUIT format.

III. MODEL DRIVEN ENGINEERING APPROACH

Our methodology rests in a Model driven
engineering approach [16]. The main elements are the
following: the CAMELEON framework [5], UsiXML
[4,24,25] and a variation of the CTT task model [15].

A. CAMELEON Framework

 The design of UIs using a model based approach
that includes characteristics such as Multi-level
abstraction and Modality independence [16] suppose
the use of a framework to deal with the complexity of
the process. Our choice is the CAMELEON
framework [21]. This framework breaks down the
development process in four levels of abstraction: Task

4545

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

and concepts (T&D), Abstract User Interface (AUI),
Concrete User Interface (CUI) and Final User Interface
(FUI). The UI is represented in the User Interface
Description Language (UIDL) UsiXML (User
Interface eXtensible Markup Language). This UIDL
covers all framework levels, in a design independent
way and over multiple contexts (including vocal and
graphical UIs).

B. CTT-based task models

The Concur Task Tree model (CTT) is a model
proposed for modeling task trees [15]. The task model
of UsiXML is implemented through CTTs. The
objective of these models is representing the tasks that
users are required to do in order to fulfill a goal. The
process is iterative and each task is decomposed in sub
tasks. Indeed, the final result is a hierarchy of tasks.
The tasks are related through temporal operators which
are described below. Concurrent Operators: These
operators imply that Taks performed in any order, in a
concurrent order: |=|, ||| and |[]|. Sequential operators:
[>, |>, >> and []>> these operators imply a strict
sequence in the order of execution of the tasks.
Selection operator: [] exclusive choice between
Tasks.

IV. METHOD OUTLINE

The following section describes the proposed
method in order to generate Zoomable UIs for RIAs
(ZUITs) at the Task Model and also at FUI level.

A. The general Method

The proposed method is a refinement of the first
level of the development cycle proposed in [5] in
which is a process of refactoring Computing
Independent Models (CIM) as defined by OMG [16] to
the concrete models: Platform Specific models. The
process could be summarized in the following sections:
In the first step (the focus of this paper) we create the
Task and Domain models (T&D). The second step
transforms the previous models into a UI definition
independent from any modality, an Abstract User
Interface (AUI). In the third step, the AUI is
transformed again towards a Concrete User Interface
(CUI). Here, the selection of modality and widgets (for
a specific toolkit) is done. The final step is the delivery
of Final User Interfaces (FUI) which are expressed in
a specific platform (for instance, .NET, LZX, SWF
among others).

B. The Task model updated

The focus of this paper is delivering an alternative
TTD representation. In order to expand current TTD
diagrams and solving the problematic presented in

section 2.3. The general process to update this model is
presented in Fig. 3.

Figure 3. The proposed update to TTDs.

1) Create a TTD representation: This step requires
the use of IDEALXML [20] to produce the UI model
of this level. The process of creation is out of the scope
of this paper and could be revised in [5].

2) Transform TTD into a ZUIT: The next section

describes the proposed method for producing the
alternative TTD structure. The key difference between
this approach and the TTD is a better handling of the
space. Because, even with big models, the area
exposed to developers remains the same. However, the
segmentation of a space, as any procedure of division
over an area implies a bin-packing like problem
(therefore, it is a NP-complete problem as well). For
this first attempt, we are using a breadth-first traversal
of the TTD in which our algorithm executes top-down
(see Fig. 5) or in an informal way (see Fig. 4). The
process of transformation is done by the aid of XSL
transformations in order to translate the UsiXML
definitions into nested box structures. XSLT has been
estimated economic enough in order to produce the
required transformations without relying on a
transformation engine and transformation rules. On the
other hand, XSLT is straightforward.

Figure 4. Transformation of TTD in ZUIT format.

4646

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

Function CreateBNF structure(TaskTree tasks)
 returns ZuiStructure or failure
For each parent task GeneratBoxComponent()
 For each leaf task

GeneratCellComponent()
and

 DefineContainmentRelation(leaf, parent)

Figure 5. Algorithm for generating the BNF structure.

3) Modify Weight and Color schemes: This section
deals with the definition of the color and weight
schemes. The power of this alternative representation
relays on these elements. Color schemes allow us to
reduce the visual overload of managing tens of labels
(or even more for standard applications). In a previous
section (problem description) we already discussed
about the intention of reducing the cognitive load and
clarify the model. Therefore, instead of introducing
textual definitions we select the use of a coding color
scheme in order to identify the nature of temporal
operators in each level of the TTD and also a color
scheme is proposed to the nature of the tasks (see
tables 1 and 2). For the sake of clearness, instead of
gray scales, we use here texture schemes in tables and
diagrams. The result of the application of these
schemes could be seen in Fig. 6.

TABLE I. CODING SCHEME FOR HEADERS

color Type of
Operator

Operators

 Sequential [>, |>, >>, []>>

 Concurrent |=|, ||| , |[]|

 Choice []

TABLE II. CODING SCHEME FOR CELLS

Color Type of task

 Interactive

 System

 Abstract

Figure 6. Application of color coding scheme.

On the other hand we have profit of the visual
specification in order to introduce another dimension:
the complexity of the task expressed as a weight. The
decomposition of tasks into subtasks allows the
detection and integration of visual help in terms of the
complexity of tasks. That is, a complex task is

represented with a relative bigger area than their
neighbors. Note: These weights were proposed in [17]
and there are shown here as an example (see table 3).

TABLE III. WEIGHT OF TASK TREE ELEMENTS

The procedure defined in [17] could be used in

order to calculate the different weights. But no explicit
method is proposed here. Also, we have added features
included by the task level definition of UsiXML (for
instance: importance and complexity levels among
others). With all this, it is possible to propose a weight
measure in order to clarify the complexity of the task.
For example, an interaction task which includes
multiple validation and recovery of information
processes is represented with a wider area (see in Fig.
7 where task E is depicted as more complex than task
D).

Figure 7. Application of weight coding scheme.

4) Modifying the ZUIT: The next step is modifying
the Task model. This revision process is as follows: the
developer navigates through the ZUIT (Zooming in
and out, Fig. 8a and 8b) in order to update the structure
of the application and also modifying task weights in
order to change their importance (see Fig. 8b). Also is
possible to make quick comparison between tasks in
terms of position (also deepness) and weight. By doing
this is possible to understand which areas are
overloaded and could be divided, as well as, some
tasks could be migrated to other sections. This
updating process now is not automatic and requires the
full regeneration of the ZUIT. Finally, Create, Read,
Update and Delete operations (CRUD) are done over
the tree tasks.

5) Exploring ZUI patterns: The final step is the
introduction and application of Zoomable UI patterns
(see Figs. 9 and 10). This classification could help us
to deliver different FUI types for a RIA application.

Weight Items to process

Task
 Type

Operator
Type

8 - Concurrent

4 Interactive Choice

2 Application Sequence

4747

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

Figure 8. Zooming into a specific task.

The patterns could be aligned according to a 2D
coordinate system and then, a Zoomable UI over the
horizontal axis could be represented with the Fig. 9a, a
vertical one with 8.b and a mixed approach one with
9c. Also, the utilization of the available area could be
expressed in alternative ways. For instance, there are
three possible patterns: expanded, closed, and
preview. This last one could be divided in two:
explained and outlined (see Fig. 10). The last ones
imply the inclusion of guidance elements for the users.
For instance, a sort of content introduction or summary
could be added. The behavior model for this type of
ZUIs is presented in Fig. 11. The icon state is not
always present. The preview alternative states are not a
common practice now-a-days. Nevertheless, the
provided model could handle all the possible states of
this kind of UIs.

Figure 9. ZUI patterns.

Figure 10. ZUI patterns (continued).

Figure 11. Behavior model of this type of ZUIs.

In order to arrive to a Zoomable FUI of the RIA UI
we could use the Zoomable patterns depicted in Figs. 9
and 10 with a variation of the algorithm for the
creation of menus proposed in [21]. In this case, the
formal algorithm is presented in Fig. 11 where the
general procedure is traversing the ZUIT (with a
breadth-first based algorithm) in order to identify
which set of tasks are related by chains of choice
operators. Note: leaf nodes are excluded because they
are related to selection operations of low level tasks,
e.g., choose color, size or price range. Instead of
selection of high level task that are related to the user's
goal, e.g., pay for a product, request supplies, among
others. In the case of a mixed pattern, the general
algorithm contemplates a simple approach: including
up to a predefined number of sub-items (Until the
capacity is reached) in order to fulfill a specific level.
Then, the rest of the sub-items are sent to other
container.

function GenerateZoomUI (CTT tree, TypePattern Pattern)
returns Zoomable-structure or failure
initialize the search tree to root node
loop do
if there are no candidate nodes for expansion then return exit
 choose a node and expand its sons
 if the sons of candidate node include only choice operators then
 include it in ZoomList[] and its sons as zoom-items.
 Case Pattern is

 OUTLINED then
 include candidate node name to zoomTitle

 EXPLAINED then
 include candidate node name to zoomTitle
 include candidate node description to
 zoomDescription

 MIXED then
 For each subset count of sons

Where mod capacity of sub-items equals 0
 then

 Generate new subzoom
 ZoomList.orientation = Mixed

 if candidate node previously marked as zoom-item then
 change the label to subzoom
 associate to upper zoomable element

Figure 12. Algorithm for generating ZUIs.

4848

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

V. CASE STUDY

The chosen case study is a commercial web site for
espresso coffee [18] where users could select and buy
new machines and supplies (see Fig. 13). A possible
TTD is presented in Fig. 15. Then, the algorithm
described in Fig. 4 is applied and the final result of this
transformation and some details (for instance, the
location of different tasks) is presented in Fig. 14.
Also, it is interesting to notice here the emergency of
patterns in (some of the) subtasks (see Fig. 14a). This
set of tasks has a similar structure which is going to be
exploited in the next section.

A. Inclusion of Container Patterns

In Fig. 16a the first level is constituted by a series
of choice operators. This set is transformed by the
algorithm (Fig. 12) into a ZUI, if the orientation
parameter is set to horizontal, vertical and mixed then
the delivered FUI is depicted in Figs. 15a, 15b and
15c, respectively. Note. For the mixed approach we
also take the next level in the TTD (a sub zoom) which
corresponds to the sub tree depicted in Fig. 16b.

Figure 13. Coffee Shop example (fragment).

Figure 14. ZUIT of the Coffee Shop example.

Figure 15. Possible Final User Interfaces.

Figure 16. Partial TTD of case study.

4949

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH

In this paper we introduced ZUIT, a novel approach to
support model driven development of RIAs. The Task
Tree Modeling step is treated with a Zoomable User
Interface based widget in order to help developers to
browse and refine the different tasks that constitute
their webapps. Various levels of the task hierarchy are
permanently available and can be reached promptly.
The navigation is one of the strong attributes of this
approach, we choose Piccolo [19] as the development
platform. Because this API provides pan-and-zoom
navigation and ease interaction with the different task
hierarchies. Finally, a general algorithm for delivering
Zoomable UIs is proposed.

It is assumed a better performance of this approach in
comparison to scrolling or simple decorative zooming
ones but further user studies are needed. Also, we are
working in the creation of a prototype in order to test
this approach with running projects. Current examples
are using [22] as primary development software (see
Fig. 15). Also, we are preparing a full definition of the
equation for calculate the weight. Finally, the process
of updating is manual (see section 4.2.4) and we are
working in automatic version

ACKNOWLEDGMENT

This work is supported by the Programme AlBan,
the European Union Programme of High Level
Scholarships for Latin America, scholarship No.
(E06D101371MX) and the Belgian Computer Human
Interaction Lab. We gratefully acknowledge the
support of the ITEA2 Call 3 UsiXML Project under
Contract #2008026

REFERENCES
[1] Dachselt, R. and Frisch, M. 2007. Mambo: a facet-based

zoomable music browser. In Proceedings of the 6th
international Conference on Mobile and Ubiquitous
Multimedia (Oulu, Dec. 12-14, 2007). MUM '07, vol.
284. ACM, New York, NY, 110-117.

[2] Dachselt, R., Frisch, M., and Weiland, M. 2008.
FacetZoom: a continuous multi-scale widget for
navigating hierarchical metadata. In Proceeding of the
Twenty-Sixth Annual SIGCHI Conference on Human
Factors in Computing Systems (Florence, Italy, April 05
- 10, 2008). CHI '08. ACM, New York, NY, 1353-1356.

[3] Plumlee, M. D. and Ware, C. 2006. Zooming versus
multiple window interfaces: Cognitive costs of visual
comparisons. ACM Trans. Comput.-Hum. Interact. 13,
2 (Jun. 2006), 179-209.

[4] UsiXML. http://www.usixml.org/ (January 15th, 2007)
[5] Martínez-Ruiz, F.J., Muñoz Arteaga, J., Vanderdonckt,

J., González-Calleros, J.M. (2006), A first draft of a

Model-driven Method for Designing Graphical User
Interfaces of Rich Internet Applications, Proc. of 4th
Latin American Web Congress LA-Web’2006 (Puebla,
October 25-27, 2006), IEEE Computer Society Press,
2006.

[6] Bederson, B. B., Meyer, J., and Good, L. 2000. Jazz: an
extensible zoomable user interface graphics toolkit in
Java. In Proceedings of the 13th Annual ACM
Symposium on User interface Software and Technology
(San Diego, Cal., United States, Nov. 06 - 08, 2000).
UIST '00. ACM, New York.

[7] Combs, T. T. and Bederson, B. B. 1999. Does zooming
improve image browsing?. In Proceedings of the Fourth
ACM Conference on Digital Libraries (Berkeley,
California, United States, August 11 - 14, 1999). DL
'99. ACM, New York, NY, 130-137.

[8] Furnas, G. W. and Zhang, X. 1998. MuSE: a multiscale
editor. In Proc. of the 11th Annual ACM Symposium on
User interface Software and Technology (San
Francisco,, November 01 - 04, 1998). UIST '98. ACM,
New York, 107-116.

[9] Johnson, B. and Shneiderman, B. 1991. Tree-Maps: a
space-filling approach to the visualization of
hierarchical information structures. In Proceedings of
the 2nd Conference on Visualization '91 (San Diego,
California, October 22 - 25, 1991). G. M. Nielson and
L. Rosenblum, Eds. IEEE Visualization. IEEE
Computer Society Press, Los Alamitos, CA, 284-291.

[10] Perlin, K. and Meyer, J. 1999. Nested user interface
components. In Proceedings of the 12th Annual ACM
Symposium on User interface Software and Technology
(Asheville, North Carolina, United States, November 07
- 10, 1999). UIST '99. ACM, New York, NY, 11-18.

[11] Appert, C. and Fekete, J. OrthoZoom scroller: 1D multi-
scale navigation. In Proc. CHI 2006, ACM Press, 21-30.

[12] Bederson, B.B., Clamage, A., Czerwinski, M.P., and
Robertson, G.G. DateLens: A fisheye calendar interface
for PDAs. Transactions on Computer-Human Interac-
tion 11, 1 (2004), 90-119.

[13] Dachselt, R. and Weiland, M. TimeZoom: a flexible
detail and context timeline. In CHI 2006 Extended Ab-
stracts, ACM Press (2006), 682-687.

[14] Bederson, B., Boltman, A., "Does Animation Help
Users Build Mental Maps of Spatial Information",
submitted to CHI ’99.

[15] Paternò, Fabio. Towards a UML for Interactive Systems
Engineering for Human-Computer Interaction: 8th IFIP
International Conf., EHCI 2001, Canada.

[16] OMG, http://www.omg.org , (May 10th, 2009)
[17] Francisco J. Martinez-Ruiz, Jean Vanderdonckt, Jaime

Muñoz Arteaga Context-aware Generation of User
Interface Containers for a Mobil Device, Mexican
International Conferences on Computer Science, IEEE
track in Human-Computer Interaction, Mexicali,
Mexico, pp 63-72, October 2008.

[18] http://www.nespresso.com (May 10th, 2009).
[19] http://www.piccolo2d.org (May 10th, 2009).
[20] Montero, F., López-Jaquero, V., Lozano, M., González,

P., IdealXML: un entorno para la gestión de experiencia
relacionada con el desarrollo hipermedial, in ADACO:
Ingeniería de la usabilidad en nuevos paradigmas
aplicados a entornos web colaborativos y adaptativos,
Proyecto Cicyt TEN2004-08000-C03-03, Taller
celebrado en Granada, September 2005.

[21] Martinez-Ruiz, F., A Development Method for User

5050

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

Interfaces of Rich Internet Applications, DEA thesis,
UCL, Louvain-la-Neuve, 31 August 2007.

[22] http://jquery.com (May 10th, 2009).
[23] Paternò, F. and Zini, E. 2004. Applying information

visualization techniques to visual representations of task
models. In Proc. of the 3rd Annual Conference on Task
Models and Diagrams (Prague,Nov. 15 - 16, 2004).
TAMODIA '04, vol. 86. ACM, New York.

[24] Vanderdonckt, J., A MDA-Compliant Environment for
Developing User Interfaces of Information Systems,
Proc. of 17th Conf. on Advanced Information Systems
Engineering CAiSE'05 (Porto, 13-17 June 2005),
Lecture Notes in Computer Science, Vol. 3520,
Springer-Verlag, Berlin, 2005, pp. 16–31.

[25] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J.,
Michotte, B., Montero, F., A Transformational
Approach for Multimodal Web User Interfaces based on
UsiXML, Proc. of 7th Int. Conf. on Multi-modal
Interfaces ICMI’2005 (Trento, 4-6 October 2005), ACM
Press, New York, 2005, pp. 259-266.

5151

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

