
A Theoretical Survey of User Interface Description Languages: Preliminary Results

Josefina Guerrero-García

Juan Manuel González-Calleros

Jean Vanderdonckt
Université catholique de Louvain

Place des Doyens, 1 – B-1348
Louvain-la-Neuve, Belgium {josefina.guerrero,

juan.m.gonzalez, jean.vanderdonckt}@uclouvain.be

Jaime Muñoz-Arteaga
Sistemas de Información

Universidad Autónoma de Aguascalientes
Av. Universidad No. 940, Col. Bosques, 20100

Aguascalientes, Aguascalientes (México)
jmunozar@correo.uaa.mx

CENIDET, Internado Palmira S/N, Col. Palmira, C.P.
62490, Cuernavaca, Morelos. México

Abstract— A user interface description language (UIDL)
consists of a specification language that describes various
aspects of a user interface under development. A comparative
review of some selected user interface description languages is
produced in order to analyze how they support the various
stages of user interface development life cycle and development
goals, such as support for multi-platform, device-
independence, modality independence, and content delivery.
There has been a long history and tradition to attempt
capturing the essence of user interfaces at various levels of
abstraction for different purposes, including those of
development. The recent return of this effort today gains more
attraction, along with the dissemination of XML markup
languages, and gives birth to many proposals for various user
interface description languages. Consequently, an in-depth
analysis of the salient features that make these languages
different from each other is desired in order to identify when
and where they are appropriate for a specific purpose. The
review is conducted based on a systematic analysis grid and
some user interfaces implemented with these languages.

Keywords-component; User interfaces, User Interface
Description Language, Extensible Markup Language, User
Interface extensible Markup Language.

I. INTRODUCTION

For many years, Human-Computer Interaction (HCI)
witnessed a perennial race for the ultimate User Interface
(UI) Description Language that would ideally capture the
essence of what a UI could be or should be. A UI
Description Language (UIDL) consists of a high-level
computer language for describing characteristics of interest
of a UI with respect to the rest of an interactive application
in order to be used during some stages of the UI
development life cycle. Such a language involves defining a
syntax (i.e. how these characteristics can be expressed in
terms of the language) and semantics (i.e., what do these
characteristics mean in the real world). It can be considered
as a common way to specify a UI independently of any
target language (e.g., programming or markup) that would
serve to implement this UI.
 The issue of UIDL was first raised when it was required
to develop a UI like a module of an interactive application

rather than merely a series of lines codes. In a second time,
the issue was reinforced when the desire appears to model a
UI by a set of specifications so as to communicate these
specifications and to share them across stakeholders, or to
(semi-)automatically generate the code of the UI, as desired
in model-based approaches for developing UIs. When a UI
was required to be run simultaneously on different
computing platforms, this need took shape in some language
that would be exchanged from one platform to another
without any changes to avoid any extraneous effort.
 For some years, the race progressively slept. The wide
availability of markup languages and the capability of
introducing any language based on XML meta-language,
along with the multiplicity of today’s available platforms
(e.g., mobile phone, smart phone, pocket PC, handheld PC,
Tiqit PC, tablet PC, laptop, traditional PC, and even wall
screens) have awaken this race and have exacerbated it to a
point where today more than a dozen of UIDLs exist that
focus on some of the desired characteristics. To shed light
on this proliferation of UIDLs, we conducted a systematic
comparison based on an analysis grid and UIs. The paper
focuses only on XML-based languages, because XML is a
well established standard that is easily extensible and that
could work with yet-to-be-invented appliances without
many changes. Furthermore, it is declarative and can be use
by non-programmers or occasional users.

For the purpose of this survey, we gathered and analyzed
as much literature as possible on each UIDL. Then,
depending on available tools, we systematically developed a
multi-platform or multi-context UI for a simple dictionary
so as to identify the capabilities of the UIDL and the ability
of this UIDL to be supported by editing, critiquing, analysis
tools, and, of course, tools for producing executable UIs,
both by compilation/execution and by interpretation.

The remainder of this paper is structured as follows:
Section 2 provides an overview of existing UIDLs,
including some of the UIDLs that have not been considered
for the comparison for different reasons (e.g., their
accessibility). Section 3 respectively describes each selected
UIDL in the comparison and identifies the main goals
pursued by each one. Section 4 defines the comparison

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.40

36

2009 Latin American Web Congress

978-0-7695-3856-3/09 $26.00 © 2009 IEEE

DOI 10.1109/LA-WEB.2009.40

36

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

criteria used in the comparison analysis and provides the
final analysis grid. Section 5 presents the conclusion.

II. SOME USER INTERFACE DESCRIPTION LANGUAGES

In this section, relevant contributions of XML-compliant
languages for the definition of UIs are analyzed, based on the
available literature and tools. These languages were not
considered for a detailed comparison for one or more of the
following characteristics:

 Specificity. The specificity of a language
differentiates from general purpose or generic
languages from very specific ones. For instance,
XISL [11] is a very interesting approach but is just
specific to multi-modal user interfaces.

 Accessibility. The accessibility of the language refers
to the available information to analyze it. When the
information is totally confidential is impossible to
have access to the semantics of the language, this is
the case with most of the software vendors
(Microsoft, IBM) languages.

 Relatedness. The relatedness characteristic is use to
differentiate whether the language is a User Interface
Description language (UIDL).

 Standard. This property indicates if the language has
been object of a standardization process. Even that
these language are very important and relevant in
some cases they have one of the previous listed
properties. Consequently, they were not considered
for the comparison.

eXtensible Interaction Scenario Language (XISL) [11]
holds an interest for our work as it is the only Web-based
language that is supported by a tool enabling the
development of multi-modal UIs based on interaction
scenarios between the user and the system manipulating
compliant devices: (i.e., PCs, mobile phones, PDAs).

The eXtensible mark-up language for MultiModal
interaction with Virtual Reality worlds (XMMVR) [18] is
used to specify multi modal (Voice and graphical interaction)
with virtual reality presentation.

X3D is an open recommendation from Web3d
(www.web3d.org) for 3D content delivery. Surprisingly
VRML and X3D are not a programming libraries in the strict
sense of their definition.

The Device Independent Authoring Language (DIAL)
[29] is a markup language for the filtering and presentation
of Web page content available across different delivery
contexts. The delivery context is a set of attributes that
characterizes the capabilities of the access mechanism, the
preferences of the user, and other aspects of the context into
which a web page is to be delivered. In particular, the
capabilities of the device (including the modalities and
representations) it supports, the characteristics of the
network over which delivery occurs, and the preferences of
the user will all potentially affect the user experience
provided [27]. The delivery context [30] is composed of the
following characteristics: Device, Network, User

preferences, Dynamic characteristics, and Context.
The Extensible MultiModal Annotation Markup

Language (EMMA) [32] is used to contain and annotate
information automatically extracted from the input of users
which manipulate multi-modal UIs. The language is capable
to convey meaning for different types of single input, i.e.,
text, speech, handwriting and combinations of any previous
modalities. These combinations are compliant with the W3C
Interaction Framework, which includes, among other, the
languages: InkML [28] an XML data format for
representing digital ink data that is input with an electronic
pen or stylus as part of a multimodal system; VoiceXML
[26] for web development and content delivery to voice
applications.
 XForms [31] separates the presentation from the data,
keeping the principle of separation of concepts, allowing
reuse and device independence. XForms is not a free-
standing document type, but is intended to be integrated into
other markup languages, such as XHTML or SVG [31].
XForms, while designed to be integrated into XHTML, is
no longer restricted only to be a part of that language, but
may be integrated into any suitable markup language.
 Software Vendors, not included in this review, also
provide solution for commercial tools, some examples are:

 MXML (Adobe) [1] is used to describe UI layout
and behaviors, and Action Script for the Flex
Framework.

 Open Laszlo (Laszlo) [14] is a XML-based language
for rich Internet applications.

 SISL (Lucent Technologies) [15] is a XML-based
language service logic that is shared across many
different user interfaces, including speech-based
natural language interfaces.

 XAML (Microsoft) [17] is a markup language for
declarative application programming for the
Windows Presentation Foundation.

 XUL (Mozilla) [33] is used to build feature-rich
cross platform applications that can run connected or
disconnected from the Internet.

III. A REVIEW OF XML-COMPLIANT USER INTERFACE

DESCRIPTION LANGUAGES

In the previous section we described some existing
UIDL that were not considered for this survey; in this
section we present an overview of UIDLs that have been
considered for different reasons: they are available for
testing, they have been used in some development cases,
they are widely used.

Dialog and Interface Specification Language (DISL)
[22] is a user interface markup language (UIML) subset that
extends the language in order to enable generic and modality
independent dialog descriptions. Modifications to UIML
mainly concerned the description of generic widgets and
improvements to the behavioral aspects. Generic widgets are
introduced in order to separate the presentation from the
structure and behavior, i.e., mainly to separate user- and

3737

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

device-specific properties and modalities from a modality-
independent presentation. The use of generic widget attribute
enables to assign each widget to a particular type of
functionality it ensures (e.g., command, variable field, text
field, etc.). Further, a DISL rendering engine can use this
information to create interface components appropriated to
the interaction modality (i.e., graphical, vocal) in which the
widget will operate. The global DISL structure consists of an
optional head element for Meta information and a collection
of templates and interfaces from which one interface is
considered to be active at one time. Interfaces are used to
describe the dialog structure, style, and behavior, whereas
templates only describe structure and style in order to be
reusable by other dialog components.

The Generalized Interface Markup Language (GIML) is
used for the generalized Interface Toolkit (GITK) [13].
GIML is used in this context as an interface descriptor.
Following the OMG principles of separation of concerns
GIML splits functionality and presentation. While the
functionality is preserved in GIML the UI is derived from
XSL files, which come from user and system profiles. This
information is merged with the functional descriptions by
using XSLT to form a final interface description. The profile
data could come directly from a file−system or from a
remote profile server. GIML avoids the use of concepts such
as "push-button", "scrollbar", whereas GIML uses terms
such as "action", "data-entry/value- choice/single/limited".
The goal is to use interface patterns in the future. These
media neutral identifiers are the foundation for an interface
object hierarchy.

Interface Specification Meta-Language (ISML) [5] was
developed with the intention that methaphors (shared
concepts between the user and the computer) be made
explicit in design. ISML de-couples that metaphor model
from any particular implementation, and express mappings
between the concepts shared between the user and the
system. It provides a framework that supports mappings
between both user-oriented models (such a task descriptions)
and software architecture concerns (interactor definitions).
The ISML framework composites these concepts within five
layers (devices, components, meta-objects, metaphor,
interactors), using a variety of mappings to link them
together.

Renderer-Independent Markup Language (RIML) [6] is a
markup language based on W3C standards that allows
document authoring in a device independent fashion. RIML
is based on standards such as: XHMTL 2.0 and XFORMS.
Special row and column structures are used in RIML to
specify content adaptation. Their semantics is enhanced to
cover pagination and layout directives in case pagination
needs to be done. Due to the use of XForms, RIML is device
independent and can be mapped into a XHTML specification
according to the target device. RIML semantics is enhanced
to cover pagination and layout directives in case pagination
needs to be done, in this sense it was possible to specify how
to display a sequence of elements of the UI.

Software Engineering for Embedded Systems using a
Component-Oriented Approach (SeescoaXML) [16] consists
of a suite of models and a mechanism to automatically

produce different final UIs at runtime for different
computing platforms, possibly equipped with different
input/output devices offering various modalities (e.g. a
joystick). This system is context-sensitive as it is expressed
first in a modality-independent way, and then connected to a
specialization for each specific platform. The context-
sensitivity of the UI is here focusing on computing platforms
variations. An abstract UI is maintained that contains
specifications for the different rendering mechanisms
(presentation aspects) and their related behavior (dialog
aspects). These specifications are written in a XML-
compliant UIDL that is then transformed into platform-
specific specifications using XSLT transformations. These
specifications are then connected to a high-level description
of input/output devices. The entry point of this forward
engineering approach is therefore located at the level of
Abstract UIs.

Simple Unified Natural Markup Language (SunML) [20]
is an XML language to specify concrete user interfaces that
can be mapped to different devices (PC, PDA, voice). The
innovation of this language is the capacity to specify
dynamically components. In SunML it is also possible to
encapsulate the style and the content of each widget
independent of the others. Two different files are used for
that purpose. Another interesting feature offered in SunML is
widget composition. Some operators have been defined for
that purpose: union (semantically-common widgets),
intersection, subtraction, substitution, inclusion. Widgets
Merging Language (WML) is the extension used for that
purpose. SunML presents a reduced set of elements that
seems to be not enough, but the composition of widgets is
used to specify more complex widgets.

TeresaXML [19] is a UIDL for producing multiple final
UIs for multiple computing platforms at design time. They
suggest starting with the task model of the system, then
identifying the abstract UI specifications in terms of its static
structure (the presentation model) and dynamic behavior (the
dialog model): such abstract specifications are exploited to
drive the implementation. This time, the translation from one
context of use to another is operated at the highest level: task
and concepts. This allows maximal flexibility, to later
support multiple variations of the task depending on
constraints imposed by the context of use. Here again, the
context of use is limited to computing platforms only. The
whole process is defined for design time and not for run-
time. For instance, there is no embarked model that will be
used during the execution of the interactive system,
contrarily to the SEESCOA approach [16]. At the AUI level,
the tool provides designers with some assistance in refining
the specifications for the different computing platforms
considered. The AUI is described in terms of interactors that
are in turn transformed into Concrete Interaction Objects
(CIOs) once a specific target has been selected.

MariaXML (http://ftp.informatik.rwth-aachen.de/Publica
tions/CEUR-WS/Vol-407/paper15.pdf) is the successor of
TeresaXML in order to support dynamic behaviors, events,
rich internet applications, multi-target user interfaces, in
particular those based on web services. In this way, it is
possible to have a UI specified in MariaXML attached to a

3838

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

web service. MariaXML is also compatible with the
Cameleon Reference Framework [4].
 User Interface Markup Language (UIML) [2] is an
XML-based language that provides: (1) a device-
independent method to describe a UI, (2) a modality-
independent method to specify a UI. UIML allows
describing the appearance, the interaction and the
connection of the UI with the application logic. The
following concepts underlie UIML:

1. UIML is a meta-language: UIML defines a small set of
tags (e.g., used to describe a part of a UI) that are
modality-independent, target platform-independent (e.g.,
PC, phone) and target language-independent (e.g., Java,
VoiceXML). The specification of a UI is done through a
toolkit vocabulary that specifies a set of classes of parts
and properties of the classes. Different groups of people
can define different vocabularies: one group might
define a vocabulary whose classes have a 1-to-1
correspondence to UI widgets in a particular language
(e.g., Java Swing API), whereas another group might
define a vocabulary whose classes match abstractions
used by a UI designer

2. UIML separates the elements of a UI and identifies: (a)
which parts are composing the UI and the presentation
style, (b) the content of each part (e.g., text, sounds,
images) and binding of content to external resources, (c)
the behavior of parts expressed as a set of rules with
conditions and actions and (d) the definition of the
vocabulary of part classes.

3. UIML groups logically the UI in a tree of UI parts that
changes over the lifetime of the interface. During the
lifetime of a UI the initial tree of parts may dynamically
change shape by adding or deleting parts. UIML
provides elements to describe the initial tree structure
and to dynamically modify the structure.

4. UIML allows UI parts and part-trees to be packaged in
templates: these templates may then be reused in various
interface designs.

USer Interface eXtensible Markup Language (UsiXML)
[25] is structured according to different levels of abstraction
defined by the Cameleon reference framework [4]. The
framework represents a reference for classifying UIs
supporting a target platform and a context of use, and
enables to structure the development life cycle into four
levels of abstraction: task and concepts, abstract UI (AUI),
concrete UI (CUI) and final UI (FUI). Thus, the Task and
Concepts level is computational-independent, the AUI level
is modality-independent (In the cockpit it can be several
physical, Vocal, GUI, Tactile) and the CUI level is toolkit-
independent. UsiXML relies on a transformational approach
that progressively moves among levels to the FUI. The
transformational methodology of UsiXML allows the
modification of the development sub-steps, thus ensuring
various alternatives for the existing sub-steps to be explored
and/or expanded with new sub-steps. UsiXML has a unique

underlying abstract formalism represented under the form of
a graph-based syntax.

Web Service eXperience Language (WSXL) [3] [11] is
designed to represent data, presentation and control. WSXL
relies on existing standards; in particular, XML based
standards such as XPath, XML Events, DOM, XForms and
XLink as well as Web Services standards such as SOAP,
WSDL and WSFL. WSXL includes an extensible
Adaptation Description Language where explicit locations
of adaptation points, the permissible operations on
adaptation points (e.g. insert, delete, modify), and the
constraints on the contents of adaptation (e.g. via an XML
Schema) can be specified. The Adaptation Description
Language can be used during a post-processing step where
the output of a WSXL component can be adapted
independently without invoking the component. Finally, A
WSXL collection provides an execution and management
environment for WSXL components. It calls the lifecycle
operations on WSXL components it instantiates, and
implements a set of interfaces and a processing model for
use by WSXL components and objects external to the
collection. An object implementing the WSXL collection
interface need not be a WSXL component. The developer
can create new and more abstract UI components.

The eXtensible user-Interface Markup Language (XICL)
[9] is an easy way to develop User Interface Components to
Browser-based software. New UI components are created
from HTML components and others XICL components.
The XICL description is translated into DHTML code. An
XICL documents is composed by a UI description
composed by HTML or XICL elements and several
components (Structure, Properties, Events and Methods.
XICL is a language to UI development by specifying its
structure and behavior in an abstract level than using only
DHTML. It also promotes reuse and extensibility of user
interface components.

 The eXtensible Interface Markup Language (XIML)
[7] [8], is a language developed by Redwhale Software,
derived from XML and able to store the models developed
in MIMIC [21]. MIMIC is a meta-language that structures
and organizes interface models. It divides the interface into
model components: user-task, presentation, domain, dialog,
user, and design models. The design model contains all the
mappings between elements belonging to the other models.
The XIML is thus the updated XML version of this previous
language. The XIML language is mainly composed of four
types of components: models, elements, attributes, and
relations between the elements. The presentation model is
composed of several embedded elements, which correspond
to the widgets of the UI, and attributes of these elements
representing their characteristics (color, size…). The
relations at the presentation level are mainly the links
between labels and the widgets that these labels describe.
XIML supports design, operation, organization, and
evaluation functions; it is able to relate the abstract and
concrete data elements of an interface; and it enables

3939

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

knowledge-based systems to exploit the captured data.

IV. USER INTERFACE DESCRIPTION LANGUAGES

COMPARISON

Many UILDs have been introduced in the literature and
are widely used in practice. With this comes need to
understand their scopes and their differences. The purpose
of this section is to make a general comparison of the cited
languages in section III. The protocol selected was first used
on a previous review on UIDLs [23], this works updates and
extends our previous survey considering the latest results
(Table 1) along the following dimensions:

 Specificity indicates if the UIDL could be used in
one or multi platforms or devices.

 Publicly available: depending on the availability of
the language deep analysis can be done. This
category was used to discard many languages that
lack on documentation or that is confidential. The
possible values are: 0 = no information available, 1 =
not available, 2 = poorly available, 3 = moderately
available, 4 = completely available and 5 =
completely available with meta-models.

 Type criterion informs whether the UIDL is a
research or industry work.

 Weight of the organization behind denotes the
organization to which the UIDL belongs. Efforts
from Universities are significant, particularly, those
where more than one university has adopted the use
of the UIDL. Those UIDL coming from the industry
might have more impact and this is reflected in its
level of usage.

 Level of usage: depending on the usage of the
language we create the following categories: 0 =
unknown, 1 = one person, 2 = two or more persons,
3 = one organization, 4 = two or more organizations
and 5 = wide usage.

Due to its number of concepts, UsiXML has been
intentionally removed from Table 2 and it is used to illustrate
the comparison protocol (Figure 1). On the left a series of
developments steps compliant with the Cameleon reference
framework [4], to the right the supported concepts and the
transformations applied to UsiXML. Details on this
comparison can be found in the model based incubator group
[33] where this work has been reported. Table 2 compares
the properties of the different UIDLs according the eight
criteria:

 Component models: this criterion gives the aspects
of the UI that can be specified in the description of
the UIs. The task model is a description of the task to
be accomplished by the user; the domain model is a
description of the objects the user manipulates,
accesses, or visualizes through the UIs; the
presentation model contains the static representation
of the UI, and the dialog model holds the
conversational aspect of the UI.

 Methodology: different approaches to specify and
model UIs exist: 1) Specification of a UI description
for each of the different contexts of use. As a starting

point, a UI specification for the context of use
considered as representative of most case, the one
valid for the context of use considered as the least
constrained or finally the one valid for the context of
use considered as the most comprehensive is
specified. From this starting UI specification,
corrective or factoring out decorations [23], (e.g., to
add, remove, or modify any UI description) are
applied so that UI specifications can be derived for
the different contexts of use. 2) Specification of a
generic (or abstract) UI description valid for all the
different contexts of use. This generic UI description
is then refined to meet the requirements of the
different contexts of use.

 Tools: some of the languages are supported by a tool
that helps designer and renders the specification to a
specific language and/or platform.

 Supported languages: specify the programming
languages to which the XML-based language can be
translated.

 Supported platforms: specify the computing platform
on which the language can be rendered by execution,
interpretation or both.

 Abstraction level: each UIDL may exhibit the
capability to express a runnable UI (instance level),
one or many models involved in the development of
this UI (model level), how these models are built
(meta-model level), and what are the fundamental
concepts on which this operation is based (meta-
meta-model level).

 Amount of tags: to reach the above level of
abstraction, each UIDL manipulates a certain
amount of tags, which is also highly depending on
the coverage of the concepts.

 Coverage of concepts: depending on the level of
abstraction, each UIDL may introduce some specific
vs. generic concepts (e.g., a given presentation
model vs. any model, each custom-defined), their
properties (e.g., to what extent can a concrete
presentation be specified), and their relations.

V. CONCLUSION

Six years from now, a first review of UIDLs was
conducted [23]. That work were reviewed and updated
accordingly to the progress of those UIDLs, while some
works have continue, there were works with not reported
update since then. In addition, to that review, new UIDLs
that have been reported in the literature and are
commercially available were added to this review. For space
reason we did not include the complete set of UIDLs but
selected those that seems more robust accordingly to the
parameters that we evaluate.

There is a plethora of user interface description languages
that are widely used, with different goals and different
strengths. On one hand we have software vendors UIDLs
and, on the other hand, there are free license UIDLs to use;
also some of them can support just one platform and others

4040

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

are multiplatform. Some of them (as WSXL or SunML) need
a few tags while others (as UsiXML) have a significant
amount. Also, some of them are the result of a research
project, while some other born in an industry. Considering
all those characteristics it might seems hard to pick one from
the list. We believe that this choice is more dictated by the
goals of the project and the particular needs, even the budget
available should be considered as commercial UIDLs are not
available for free.

The goal of this work is aimed to help authors to decide
what UIDL to use for their projects. We hope this analysis
helps in understanding and comparing the components of
different UIDLs in a systematic way –their strengths,
limitations, and appropriateness for use. There is currently
such a large number of UIDLs available that choosing
among them can be time consuming and difficult to do, this
comparison can assist UI designers in choosing a language
suited to their purposes.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the
CONACYT program (www.conacyt.mx) supported by the
Mexican government, the Human European project (Model-
based Analysis of Human Errors during Aircraft Cockpit
System Design, project funded by FP7-AAT-2007-RTD-
1/CP-FP-211988 from European Commission), the ITEA2
Call 3 UsiXML project under reference 20080026, and the
PROMEP net Project under Contract UAA-CA-48.

REFERENCES
[1] Adobe (2009), Flex overview, Adobe Systems Incorporated,

Available online: http://www.adobe.com/products/flex/overview/
[2] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S. &

Shuster, J. (1999), UIML: An Appliance-Independent XML User
Interface Language. In A. Mendelzon, editor, Proceedings of 8th
International World-Wide Web Conference WWW’8 (Toronto, May
11-14, 1999), Amsterdam, 1999. Elsevier Science Publishers.

[3] Arsanjani, A., Chamberlain, D. and et al. (2002), (WSXL) web
service experience language version, 2002. Retrieved from:
http://www-106.ibm.com/developerworks/library/ws-wsxl2/.

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J.: A Unifying Reference Framework for Multi-Target
User Interfaces. Interacting with Computers, Vol. 15, No. 3 (June
2003) 289–308.

[5] Crowle, S., Hole, L., ISML: An Interface Specification Meta-
Language. DSV-IS 2003, Funchal, Madeira Island, Portugal. June 11-
13, 2003. Lecture Notes I Computer Science 2844 Springer 2003,
ISBN 3-540-20159-9.

[6] Demler, G., Wasmund, M., Grassel, G., Spriestersbach, A. & Ziegert,
T. (2003), Flexible pagination and layouting for device independent
authoring, WWW2003 Emerging Applications for Wireless and
Mobile access Workshop.

[7] Eisenstein J., Vanderdonckt J., Puerta A. (2000), Adapting to Mobile
Contexts with User-Interface Modeling, Proceedings of 3rd IEEE
Workshop on Mobile Computing Systems and Applications
WMCSA’2000 (Monterey, 7-8 December 2000), IEEE Press, Los
Alamitos, 2000, pp. 83-92.

[8] Eisenstein J., Vanderdonckt J., Puerta A. (2001), Model-Based User-
Interface Development Techniques for Mobile Computing,
Proceedings of 5th ACM Int. Conf. on Intelligent User Interfaces
IUI’2001 (Santa Fe, 14-17 January 2001), Lester, J. (Ed.), ACM
Press, New York, 2001, pp. 69-76.

[9] Gomes de Sousa, L. & Leite, J. C. (2003), XICL: a language for the
user's interfaces development and its components. Proceedings of the
Latin American conference on Human-computer interaction (Rio de
Janeiro, Brazil, August 17 - 20, 2003), ACM Press pages, New York,
pp. 191-200.

[10] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M.,
Coyette, A., Vanderdonckt, J., Human-Centered Engineering with the
User Interface Markup Language, in Seffah, A., Vander-donckt, J.,
Desmarais, M. (eds.), “Human-Centered Software Engineering”,
Chapter 7, HCI Series, Springer, London, 2009, pp. 141-173.

[11] IBM (2002), WSXL specification, April 2002, retrieved on Janury 2nd
2009.

[12] Katsurada, K., Nakamura, Y., Yamada, H., Nitta, T. (2003), XISL :A
Language for Describing Multimodal Interaction Scenarios,
Proceedings of the 5th International Conference on Multimodal
Interfaces ICMI’03 (Vancouver, Canada.

[13] Kost, S. (2004), Dynamically generated multi-modal application
interfaces. Ph.D. Thesis, Technical University of Dresden and Leipzig
University of Applied Sciences, Germany.

[14] Laszlo Systems Inc. (2008), OpenLaszlo Application Developer's
Guide, Available online: Available online:
http://www.openlaszlo.org/lps4.2/docs/developers/architecture.html

[15] Lucent (2000), Sisl: Several Interfaces, Single Logic, Lucent
Technologies, Available online: http://www.bell-
labs.com/user/lalita/sisl-external.html

[16] Luyten, K., Abrams, M., Vanderdonckt, J. & Limbourg, Q. (2004)
Developing User Interfaces with XML: Advances on User Interface
Description Languages, Sattelite workshop of Advanced Visual
Interfaces 2004, Gallipoli, Italy.

[17] Microsoft (2009), XAML, Microsoft Corporation, Available online:
http://msdn.microsoft.com/en-us/library/ms747122.aspx

[18] Olmedo,H., Escudero,D., & Cardenoso,V (2008).: A Framework for
the Development of Applications Allowing Multimodal Interaction
with Virtual Reality Worlds. Communications Proceedings 16th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision'2008 WSCG’2008 (Plzen - Bory,
Czech Republic, February 4-7), University of West Bohemia Press,
pp. 79-86.

[19] Paternò, F. & Santoro, C. (2003), A Unified Method for Designing
Interactive Systems Adaptable to Mobile and Stationary Platforms,
Interacting with Computers, Elsevier, 15, pp. 349-366.

[20] Picard, E., Fierstone, J., Pinna-Dery, A-M. & M. Riveill (2003).
Atelier de composition d'ihm et évaluation du modèle de composants.
Livrable l3, RNTL ASPECT, Laboratoire I3S, mai.

[21] Puerta A.R. (1996), The Mecano Project: Comprehensive and
Integrated Support for Model-Based Interface Development,
Proceedings of 2nd Int. Workshop on Computer-Aided Design of
User Interfaces CADUI’96 (Namur, 5-7 June 1996), Presses
Universitaires de Namur, 1996, pp. 19-35.

[22] Schaefer, R., Steffen, B., Wolfgang, M., Task Models and Diagrams
for User Interface Design, Proceedings of 5th International Workshop,
TAMODIA'2006 (Hasselt, Belgium, October 2006), Lecture Notes in
Computer Science, Vol. 4385, Springer Verlag Berlin, 2006, pp. 39-
53.

[23] Souchon, N., Vanderdonckt, J., A Review of XML-Compliant User
Interface Description Languages, Proc. of 10th Int. Conf. on Design,
Specification, and Verification of Interactive Systems DSV-
IS'2003 (Madeira, 4-6 June 2003), Jorge, J., Nunes, N.J., Falcao e
Cunha, J. (Eds.), Lecture Notes in Computer Science, Vol. 2844,
Springer-Verlag, Berlin, 2003, pp. 377-391.

[24] Thevenin, D. (2001), Adaptation En Interaction Homme-Machine :
Le Cas de la Plascticité. PhD thesis, Université Joseph Fourier, 21
December 2001.

[25] Vanderdonckt, J. A MDA-Compliant Environment for De-veloping
User Interfaces of Information Systems. In Proc. of 17th Conf. on
Advanced Information Systems Engineering CAiSE'05 (Porto, 13-17
June 2005), LNCS, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-

4141

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

31.

[26] W3C (2004), Voice Extensible Markup Language (VoiceXML)
Version 2.0, W3C recommendation, 16 March 2004, W3C
Consortium. Available online: http://www.w3.org/TR/voicexml20.

[27] W3C (2003), Device Independence Principles, W3C Working Group
Note, 01 September 2003. W3C Consortium. Available online:
http://www.w3.org/TR/2003/NOTE-di-princ-20030901/

[28] W3C (2006), W3C InkML: Digital Ink Markup Language,
W3C recommendation, 24 October 2006, W3C consortium. Available
online: http://www.w3.org/2002/mmi/ink

[29] W3C (2007a), Dial: Device Independent Authoring Language,
W3C Working Draft, W3C consortium. Available online:
http://www.w3.org/TR/dial/

[30] W3C (2007b), Content Selection Primer 1.0, W3C Working Draft,

W3C consortium. Available online:
http://www.w3.org/TR/cselection-primer/

[31] W3C (2007c), XForms 1.0 (Third Edition), W3C recommendation,
29 October 2007, W3C consortium. Available online:
http://www.w3.org/TR/2007/REC-xforms-20071029/

[32] W3C (2008), EMMA: Extensible MultiModal Annotation markup
language, W3C Proposed Recommendation, W3C consortium.
Available online: http://www.w3.org/TR/emma.

[33] W3C Model-based User Interfaces Incubator Group
http://www.w3.org/2005/Incubator/model-based-
ui/wiki/Task_Meta_ModelsXML User Interface Language (XUL)
1.0.

[34] http://www.mozilla.org/projects/xul/xul.htm

Abstract User Interface
(PSM)

Concrete User Interface
(PIM)

Final User Interface

Task & domain
(CIM)

User, platform,
environment

Tr
an

sf
or

m
at

io
ns

Markup: Flash, VRML, WML, XHTML, X+V
Programming: C++, Java, Java3D

M
od

el
 to

 C
od

e
ge

ne
ra

tio
n

(M
2C

)
G

en
er

at
iv

e
pr

og
ra

m
m

in
g,

T
em

pl
at

e
ba

se
d

ap
pr

oa
ch

AUI = hierarchy of abstract containers (ACs) and Abs. Indiv.
Comp. (AICs) and relations
AIC = faceted computing: input, output, control, navigation
Relations = structural, temporal

CUI = hierarchy of concrete interaction objects (CIOs) + behaviour
CIO = graphical / auditory / 3D / hapget
Graphical CIO = containers (window, dialog box,…) or indiv. (check box)
Auditory CIO = form, group, field, value (VoiceXML)
Behaviour = set of ECA rules (events, conditions, actions)
Hapget = 3D CIO augmented with haptic parameters

M
od

el
 to

 M
od

el
 tr

an
sf

or
m

at
io

n
T

ra
ns

fo
rm

at
io

n
=

G
ra

ph
 g

ra
m

m
ar

M
ap

pi
ng

 ,
tr

an
sf

or
m

at
io

n
m

od
el

Task = extended CTT, based on Markopoulos LOTOS desc.
Domain = UML class diagram + extensions in a profile

User population = hierarchy of user stereotypes with param.
Platform = subset of CC/PP (UAProf)
Environment = physical, psychological, organisat. properties

Figure 1 Comparison protocol exemplified with UsiXML.

Table 1 General features of UIDLs

UIL Specificity Publicly
available

Type Weight of the organization behind Level of
usage

DISL Multimodal UIs for mobile
devices

2 Research Paderborn University 3

GIML Multimodal 3 Research Technical University of Dresden and Leipzig
University of Applied Sciences

2

ISML GUI, multiplatform,
 multidevice

2 Research Bournemouth University 1

RIML Mobile devices 0 Industry Industry: SAP Research, IBM Germany, and Nokia
Research Center along with CURE, UbiCall, and
Fuijitsu Invia

3

SeescoaXML Multiplatform, multidevice,
dynamic generation UI

2 Research Expertise Centre for Digital Media
Limburgs Universitair Centrum

3

SunML Multiplatform 4 Research Rainbow team, Nice University 3
TeresaXML Multiplatform, multidevice, 4 Research HCI Group of ISTI-C.N.R. 3
UIML Multiplatform 4 Industry Harmonia, Virginia Tech Corporate Research

(OASIS)
3

UsiXML Multiplatform 5 Research UCL 3
WSXL multiplatform, multidevice 4 Industry IBM 3
XICL Multiplatform 3 Research Federal University of Rio Grande do Norte, Brazil 3
XIML multiplatform, multidevice 4 Research Redwhale Software 3

4242

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

Table 2 Properties Comparison of UIDLs

UIL Models Methodology Tools Supported languages Supported
platforms

Level Tags Concepts

DISL Presentati
on,
dialog
and
control

Specification
of a generic,
platform-
independent
multimodal UI

Rendering
engine

VoiceXML, Java
MIDP, Java Swing,
Visual C++

Mobile and
limited
devices

Model
level

Not
specified

Head element,
interface classes
(structure, style,
behavior), state,
generic widgets

GIML Presentati
on,
dialog,
and
domain

Specification
of a generic
interface
description.

GITK
(Generalized
Interface
Toolkit)

C++, Java, Perl Not
specified

Meta-
model

15 tags Interface, dialog,
widget, objects

ISML Presentati
on, task,
dialog,
domain

Specification
of a generic UI
description

Under
construction

Java, Microsoft
foundation class, Java
swing classes

Desktop
PC, 3D
screen

Model
level

Not
specified

Mappings and
constrains, action
events, meta-objects,
display parts,
controller parts,
interaction definition

RIML There is
no
informati
on

Specification
of a generic UI
description

There is no
information

XHTML, XFORMS,
XEvents, WML

Smart
phone, pda,
Mobile,
Desktop Pc

Model
level

There is
no
informati
on

Dialog, Adaptation,
layout, element

Seesco
aXML

Task,
Presentati
on,
dialog

Specification
of a generic UI
description

CCOM
(BetaVersion
1.0 2002)
PacoSuite
MSC Editor

Java AWT, Swing,
HTML,
java.microedition,
applet, VoxML, WML
Juggler

Mobile,
desktop PC,
Palm III

Model
level

Not
specified

Component, port,
connector, contract,
participant, blueprint,
instance, scenario,
pltform, user, device

SunML Presentati
on,
dialog,
domain

Specification
of a generic UI
description

SunML
Compiler

Java Swing,
voiceXML, HTML,
UIML,

Desktop Pc,
pda

Model
level

14 tags Element, list, link,
dialog, interface,
generic events,
synchronization

Teresa
XML

Presentati
on, task,
dialog

Specification
of a generic UI
description

CTTE Tool
for task
Models
Teresa

Markup: Digital TV,
VoiceXML,
XHTML/SVG, X+V
Programming: C#

DigitalTV,
Mobile,
Desktop
PC,

Model
level

19 tags Mappings, models, ,
platform, task, input,
output

UIML Presentati
on,
dialog,
domain

Specification
of a generic UI
description

UIML.net,
VoiceXML
renderer,
WML
renderer,
VB2UMIL

HTML, Java, C++,
VoiceXML, QT,
CORBA,

 and WML

desktop PC,
a handheld
device, tv,
mobile

Model
level

50 tags interconnection of
the user interface to
business logic,
services

WSXL Presentati
on,dialog
, domain

Specification
of a generic UI
description

Not specified HTML PC, Mobile
phone,

Model
level

12 tags CUI=XForms,
WSDL,
Mapping=XLang
Workflow=WSFL,
Logic=XML event

XICL Presentati
on,dialog
,

Specification
of a generic UI
description

XICL
STUDIO

HTML, ECMAScript,
CSS e DOM.

desktop PC Model
level

Not
specified

Component,
structure, script,
events, properties,
interface

XIML Presentati
on, task,
dialog,
domain

Specification
of a generic UI
description

XIML
Schema

HTML, java swing,
WLM

Mobile,
desktop PC,
PDA

Model
level

32 tags Mappings, models,
sub models,
elements, attributes
and relations between
the elements

4343

Authorized licensed use limited to: Saerens Marco. Downloaded on December 6, 2009 at 04:24 from IEEE Xplore. Restrictions apply.

