
85

Chapter 7

A METHOD FOR DEVELOPING 3D USER INTER-
FACES OF INFORMATION SYSTEMS

Juan Manuel González Calleros1, Jean Vanderdonckt1, and
Jaime Muñoz Arteaga2
1 School of Management (IAG), Université catholique de Louvain
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
E-mail: {gonzalez, vanderdonckt}@isys.ucl.ac.be – Web: http://www.isys.ucl.ac.be/bchi
Tel: +32 10 47{8349, 8525} – Fax: +32 10 478324
2Universidad Autonóma de Aguascalientes, Dpto. de Sistemas de Información
Av. Universidad # 940 – C.P. 20100 Aguascalientes (México).
E-Mail: jmunozar@correo.uaa.mx – Web: http://148.211.40.92:8080/jaime/index.htm

Abstract A transformational method for developing tri-dimensional user interfaces of
interactive information systems is presented that starts from a task model and a
domain model to progressively derive a final user interface. This method con-
sists of three steps: deriving one or many abstract user interfaces from a task
model and a domain model, deriving one or many concrete user interfaces
from each abstract interface, and producing the code of the final user interfaces
corresponding to each concrete interface. To ensure the two first steps, trans-
formations are encoded as graph transformations performed on the involved
models expressed in their graph equivalent. In addition, a graph grammar
gathers relevant graph transformations for accomplishing the sub-steps in-
volved in each step. Once a concrete user interface is resulting from these two
first steps, it is converted in a development environment for 3D user interfaces
where it can be edited for fine tuning and personalization. From this environ-
ment, the user interface code is automatically generated. The method is de-
fined by its steps, input/output, and exemplified on a case study. By expressing
the steps of the method through transformations between models, the method
adheres to Model-Driven Engineering paradigm where models and transforma-
tions are explicitly defined and used.

Keywords: 3D user interfaces, Model driven engineering, Scene model, Transformational
approach, Virtual reality, World model.

86 González Calleros, Vanderdonckt, and Muñoz Arteaga

1. INTRODUCTION

Today, the development life cycle of 3D User Interfaces (UIs) mostly
remains an art more than a principled-based approach. Several methods
[1,3,8,9,15] have been introduced to decompose this life cycle into steps and
sub-steps, but these methods rarely provide the design knowledge that
should be typically used for achieving each step. In addition, the develop-
ment life cycle is more focusing directly on the programming issues than on
the design and analysis phases. This is sometimes reinforced by the fact that
available tools for 3D UIs are toolkits, interface builders, rendering engines,
etc. When there is such a development life cycle defined, it is typically struc-
tured into the following set of activities:

1. The conceptual phase is characterized by the identification of the content
and interaction requests. The meta-author discusses with the interface de-
signer to take advantage of the current interaction technology. The inter-
face designer receives information about the content. The result of this
phase is the production of UI schemes (e.g., written sentences, visual
schemes on paper) for defining classes of interactive experiences (e.g.
class Guided tour). Conceptual schemes are produced both for the final
users and the authors. The meta-author has a deep knowledge of the con-
tent domain and didactic skills too. He/she communicates with the final
user too, in order to focus on didactic aspects of interaction.

2. In the implementation phase, the UI designer builds the final user inter-
face and the author interface on the basis of the UI schemes. The results
of this phase are available as tools for the authors, which can be manipu-
lated without a deep knowledge of computer science world. It is important
to note that this implementation phase can be a personalization or a sub-
setting of existing tools, rather than a development from scratch.

3. In the content development phase, authors choose among the available
classes of interactive experiences and instantiate the one that fits their par-
ticular needs (e.g. a guided tour, paths). They take advantage of a number
of complementary subjects: editors (e.g., writer, 2D graphic artist), 3D
modeler, and world builder.

4. In the final user interaction phase, the final user interacts with the con-
tents of the 3D world, composed by the author, through the interface im-
plemented by the interface designer. The final user interaction is moni-
tored in order to improve both the usability of the interface and the effec-
tiveness of content communication.

As opposed to a content-centric approach, some other authors advocate a
user-centered approach; hence, involvement of users in the requirements
analysis and evaluation are essential for achieving a usable product. They
also argue for separating the conceptual part from the rest of the life cycle to

A Method for Developing 3D User Interfaces of Information Systems 87

identify and manage the Computing-Independent Models (CIM as defined in
the Model-Driven Engineering –MDE) from the Computing-Dependent part.
This part is in turn typically decomposed into issues that are relevant only to
one particular development environment (Platform-Specific Models –PSM)
as opposed to those issues which remain independent from any underlying
software (Platform-Independent Models–PIM). In the MDE paradigm pro-
moted by the Object Management Group (www.omg.org), it is expected that
any development method is able to apply this principle of separation of con-
cerns, is able to capture various aspects of the problem through models, and
is capable of progressing moving from the abstract models (CIM and PIM)
to the more concrete models (PSM and final code). The goal of this paper is
to demonstrate the feasibility of a MDE-compliant method that is user-
centered as opposed to contents-centric for developing 3D UIs.

The remainder of this paper is structured as follows: Section 2 summa-
rizes related work, Section 3 outlines the general method and progressively
explains all steps of the method based on models. Section 4 concludes the
paper and presents some avenue for future work.

2. RELATED WORK

Different categories of software exist to support the rendering of 3D UIs
ranging from the physical level to the logical level. At the lowest level are
located APIs such as OpenGL, Direct3D, Glide, and QuickDraw3D, which
provide the primitives for producing 3D objects and behaviors. They offer a
set of powerful primitives for creating, manipulating 3D objects, but these
primitives are located at a level that does not allow any straightforward use
for rendering higher level widgets. Several 3D desktop replacements for Mi-
crosoft Windows XP exist such as Microsoft Task Gallery (http://research.
microsoft.com/adapt/TaskGallery/), the Infinite3D Cube (http://www.infinite
-3d.com/), SphereXP (http://www.hamar.sk/sphere/) which is taking the
known concept of three-dimensional desktops to its own level. It offers a
new way to organize objects on the desktop such as icons and applications.
SphereXP, like other similar environments, are usually limited to presenting
existing interactive applications and their UIs in a flat 2D way, even if they
are working in a 3D world (Fig. 1). Similarly, SUN has initiated the Looking
Glass Project (http://wwws.sun.com/software/looking_glass/index.html) as a
3D desktop environment for Linux workstations. These environments are
very powerful for their manipulation of windows in 3D, but they are not in-
tended to render 2D UIs with 3D effects. Beyond existing 3D desktop envi-
ronments is Metisse [4]. It consists of an X-based window system for two
purposes: it should facilitate the development of innovative window man-

88 González Calleros, Vanderdonckt, and Muñoz Arteaga

agement techniques and it should conform to existing standards and be ro-
bust and efficient enough to be used on a daily basis. Metisse is not focused
on a particular kind of interaction (e.g., 3D), it should be considered rather a
tool for creating new desktops, including 3D. On the other hand, it is actu-
ally possible to directly implement 3D UIs on top of 3D development tool-
kits such as Contigra, Croquet (http://croquetproject.org/). The advantage of
these environments is that true 3D widgets (e.g., a ring menu could be im-
plemented with an appropriate presentation and behavior). However, this as-
sumes that we have to redevelop all widgets traditionally found in 2D UIs
(e.g., a list box, a drop-down list) in these environments and that 3D contain-
ers are required to gather them, as windows play the role of containers for
2D widgets. RealPlaces (http://www-3.ibm.com/ibm/easy/eou_ext.nsf/pub
lish/84) is a particular case where all office 3D widgets are already prede-
fined with their behavior, but they cannot be changed or they do not neces-
sarily correspond to their 2D counterpart.

Another series of approaches is often referred to as a model-based one
[15] as they exploit specifications of the widgets, of the UI or of the com-
plete scene to automatically generate VRML97 or X3D code of these UIs.
The underlying model is frequently expressed in a XML-compliant language
as the syntax of such a language is nowadays very widespread. Typical ex-
amples of such approaches include InTml (http://www.cs.ualberta.ca/
~pfiguero/InTml/Introduction.html), VRIXML [6], and Flatland (based on
3dml, see http://mr.3dml.free.fr/).

Figure 1. Flat rendering of a 2D window in a 3D world (Source: Windows 3DNA environ-

ment)

A Method for Developing 3D User Interfaces of Information Systems 89

From these existing environments, we can observe that most of them are
more oriented towards facilitating the life of the developer, but do not neces-
sarily address the concerns of the designer and often forget the user require-
ments. It is not their purpose to provide designers and analysts with a com-
plete environment that support them throughout the development life cycle.
Therefore, such environments could be considered as software that could be
complemented by design tools supporting more the conceptual phase than
the development phase. In addition, they do not offer many choices in ex-
ploring design options and design alternatives during the design phase.
These environments are usually restricted to one programming or markup
language and do not allow easy porting code from one platform to another.

3. METHOD OUTLINE

To address the aforementioned shortcomings, a method is now intro-
duced that structures the development life cycle for 3DUIs from the concep-
tual phase to the final user interaction phase by incorporating explicitly
user’s requirements from the beginning. Since the method should be compli-
ant with MDE and its principle of separation of concerns, the method (Fig.
2) is itself decomposed into a sequence of four steps. Each following sub-
section is dedicated to the definition, the discussion, and the exemplification
of these steps on a running example: a virtual polling system for which dif-
ferent versions will be obtained.

AUI production (IdealXML)

CUI production (TransformiXML)

3D Concrete
User Interface
#1 (UsiXML)

Maya
Development
environment

Java3D
code

HTML browser
with Cortona player

Java3D Generator

Abstract user
interface #1

Domain modelTask model

…

…

Abstract user
interface #2

Abstract user
interface #n

3D Concrete
User Interface

#3 (MEL)

VRML97/
X3D code

HTML browser
with Cortona player

VRML97/X3D Generator

…

Step 1

Step 2

Step 3

Step 4

Task & Concepts

Abstract UI

Concrete UI

Final UI

AUI: UI definition
independent of any
modality of interaction

CUI: concretizes an AUI
into CIOs (widget sets
found in popular graphical
and vocal toolkits)

FUI: operational UI
that runs on a
particular platform either
by interpretation or by
execution

3D Concrete
User Interface
#2 (Java3D)

VRML97
code

HTML browser
with Cortona player

VUIToolkit

AUI production (IdealXML)

CUI production (TransformiXML)

3D Concrete
User Interface
#1 (UsiXML)

Maya
Development
environment

Java3D
code

HTML browser
with Cortona player

Java3D Generator

Abstract user
interface #1

Domain modelTask model

…

…

Abstract user
interface #2

Abstract user
interface #n

3D Concrete
User Interface

#3 (MEL)

VRML97/
X3D code

HTML browser
with Cortona player

VRML97/X3D Generator

…

Step 1

Step 2

Step 3

Step 4

Task & Concepts

Abstract UI

Concrete UI

Final UI

AUI: UI definition
independent of any
modality of interaction

CUI: concretizes an AUI
into CIOs (widget sets
found in popular graphical
and vocal toolkits)

FUI: operational UI
that runs on a
particular platform either
by interpretation or by
execution

3D Concrete
User Interface
#2 (Java3D)

VRML97
code

HTML browser
with Cortona player

VUIToolkit

Figure 2. Outline of the method for developing 3D user interfaces.

90 González Calleros, Vanderdonckt, and Muñoz Arteaga

3.1 Reference Framework for Multi-target UIs

Prior to defining the concepts on which the rest of this paper will rely, we
assume to rely on the Cameleon framework [2], which structures the devel-
opment life cycle of multi-target UIs according to four layers: (i) the Final
UI (FUI) is the operational UI, i.e. any UI running on a particular computing
platform either by interpretation (e.g. through a Web browser) or by execu-
tion (e.g., after the compilation of code in an interactive development envi-
ronment); (ii) the Concrete UI (CUI) expresses any FUI independently of
any term related to a peculiar rendering engine, that is independently of any
markup or programming language; (iii) the Abstract UI (UI) expresses any
CUI independently of any interaction modality (e.g., graphical, vocal, tac-
tile); and (iv) the Task & Concept level, which describes the various interac-
tive tasks to be carried out by the end user and the domain objects that are
manipulated by these tasks. We refer to [3] for more details and to [12] for
its translation into models uniformly expressed in the same User Interface
Description Language (UIDL), which is selected to be UsiXML, which
stands for User Interface eXtensible Markup Language (http://www.usixml.
org). Any other UIDL could be used equally provided that the used concepts
are also supported. The Context of use describes all the entities that may in-
fluence how the user’s task is carrying out with the future UI. It takes into
account three relevant aspects, each aspect having its own associated attrib-
utes contained in a separate model: user type (e.g., system experience, task
experience, task motivation), computing platform type (e.g., mobile platform
vs. stationary one), and physical environment type (e.g., office conditions,
outdoor conditions).

3.2 Step 1: The Task and Domain Models

The task model, the domain model, and the mappings between, are all
graphically described using IdealXML tool [14], an Interface Development
Environment for Applications specified in UsiXML. Fig. 3 depicts the do-
main model of our UI as produced by a software engineer. A participant par-
ticipates to a questionnaire. A questionnaire is made of several questions. A
question is attached to a series of answers. The domain model has the ap-
pearance of a class diagram. Fig. 3 illustrates a CTT representation of the
task model envisioned for the future system. The root task consists of par-
ticipating to an opinion poll. In order to do this, the user has to provide the
system with personal data. After that, the user iteratively answers some ques-
tions. Answering a question is composed of a system task showing the title
of the question and of an interactive task consisting in selecting one answer
among several proposed ones. Once the questions are answered, the ques-

A Method for Developing 3D User Interfaces of Information Systems 91

tionnaire is sent back to its initiator. All temporal relationships are enabling
which means that the source task has to terminate before the target task can
be initiated.

The dashed arrows between the two models in Fig. 3 depict the model
mappings, such as manipulates relationships between the task and the do-
main model as dashed arrows. Provide Personal Data is mapped onto Par-
ticipant class. Show Question is mapped onto the attribute title of class Ques-
tion. The task Select Answer is mapped onto the attribute title of the class
Answer. Finally, the task Send Questionnaire is mapped onto the method
sendQuestionnaire of the class Questionnaire. The initial task may be con-
sidered as not precise enough to perform transformations. Indeed, the task
Provide Personal Data is an interactive task consisting in creating instances
of Participant. In reality, this task will consist in providing a value for each
attribute of Participant. This could mean that the task model is not detailed
up to the required level of decomposition.

Figure 3. Process to create 3D user interfaces.

Rule 1 is applied to the task and domain models. The Left-Hand Side
(LHS) contains an interactive task (1) where the user action required to per-
form the task is of type create. This task manipulates a class from the do-

92 González Calleros, Vanderdonckt, and Muñoz Arteaga

main model (2), which is composed, of an attribute that takes the value of a
variable x. The Negative Application Condition (NAC) specifies that a task
manipulates an attribute (3) whose name is stored in the same variable x.
The Right Hand Side (RHS) specifies the decomposition of the task de-
scribed in LHS (1) into an interactive task (2), which requires a user action
of type create. Note the way they are named using a post-condition on their
name attribute. The mappings between nodes and between edges belonging
to the three components of a rule (i.e., NAC, LHS, and RHS) are specified
by attached numbers. The application of this rule on the task and domain
model represented in the form of a graph G is the following: when the LHS
matches into G and the NAC does not match into G, the LHS is replaced by
the RHS, resulting a transformed graph G’. Therefore, Rule 1 decomposes
the task Provide Personal Data into four new sub-tasks, each of them ma-
nipulating an attribute of class Participant.

NAC LHS RHS

::=

NAC LHS RHS

::=

Rule 1. Consolidation of the task model.

Consequently, to the execution of this rule, four new tasks are created:
create name, create zipCode, create ageCategory and create gender. Fig. 3
contains the mapping model containing the mappings between the refined
task model and the domain model of the opinion polling system. Each of the
four new sub-tasks will be mapped on the corresponding attribute of the
class Participant, the rest of the mappings remaining the same. Due to the
fact that “create” is a very general action type and that both ageCategory and
gender attributes hold an enumerated domain, “create” can be specialized
into “select”. Rule 2 is applied in order to achieve this goal. Rule 3 provides
a default temporal relationship (set to enabling) when two sister tasks have
no temporal relationship.

Rule 2. Specializing a user action.

A Method for Developing 3D User Interfaces of Information Systems 93

3.3 Step 2: From Task and Domain Models to Abstract

Model

The second transformation step involves a transformation system that
contains rules applied to transition from the task and domain model to the
abstract model. Those rules create an abstract container (AC) for task that
has task children, i.e. participate poll, insert personal data, and answer ques-
tion for this example. Following the same mechanism of rule transformation,
an abstract individual component (AIC) is created for every leaf task found
the task model: insert name, insert zip code, select gender, select age cate-
gory, show question, select answer and send questionnaire. Each AIC can
be equipped with facets describing its main purpose/functionality. These
facets are derived from the combination of task model, domain model and
the mappings between them. Task definitions have information that is rele-
vant for the mappings, such as: userAction, which could be: create, delete,
modify, among others. According to these mappings it can be derived that
AICs create name and create zipCode are equipped with an input facet of
type “create attribute value”. The generated abstract user interface is shown
in Fig. 4, detailed description of the mapping rules applied are found in [16].

Figure 4. IdealXML Mapping from Task and Domain model to Abstract Model.

3.4 Step 3: From Abstract Model to Final User Interface

The third step implies a transformational system that is composed of nec-
essary rules for realizing the transition from AUI to CUIs. For this purpose,
other design rules could be encoded in UsiXML so as to transform the AUI
into different CUI depending the options decided. Since the AUI model is a

94 González Calleros, Vanderdonckt, and Muñoz Arteaga

CIM, it is supposed to remain independent of any implementation. However,
when it comes to transform this AUI into a corresponding CUI or several
variants of it, platform concerns come into consideration. For this purpose,
several design rules exist that transform the AUI into CUIs with different de-
sign options that will then be turned into final code when generated. We
need to encode components that correspond to the meta-model of 3DUI in
UsiXML. All information manipulated by all sub-tasks are all gathered in
one container. In the 3D space we could imagine an infinity set of objects
that could be used as containers. The virtual space is the basic container for
all the concrete interface objects (CIO), i.e., entities that users can perceive
and/or manipulate. So we could have 2D renders such as Polygons, irregular
or regular, n-sized; 3D renders such as: polyhedrons, which involves
prisms, parallelepipeds, pyramids, cones, spheres; also we consider the fact
that any combination of surfaces and shape could be created and function as
a container. See in Figure 5 the meta-model corresponding to the definition
of the environmental model, which is responsible for describing the world in
which any 3D UI could be rendered.

Location
xPositionSurface : SFFloat (id)
yPositionSurface : SFFloat (id)
zPositionSurface : SFFloat (id)

InteractiveShape
isFluid : SFFloat (id)
isRigid : SFFloat (id)

InteractiveSurface
isGraspable : boolean (id)
isRotable (id)

ContextModel

UserStereotype
id : string
stereotypeName : string
taskExperience : string
systemExperience : string
deviceExperience : string
taskMotivation : string

0..n

0..1

0..n

0..1

Platform
id : string
name : string

0..n

0..1

+isLocated0..n
+locates

0..1
Context

id : string (id)
name : string (id)

1

1..n

+isComposedOf 1

+Composes 1..n

1..n

0..1

1..n

0..1

1..n 0..11..n 0..1

Shape&
id : String (id)
name : String (id)
xPosition : SFFloat (id)
yPosition : SFFloat (id)
zPosition : SFFloat
xSize : SFFloat
ySize : SFFloat
zSize : SFFloat
Geometry : string : string

Environment
type : string
id : string
name : string
isNoisy : boolean
lightingLevel : string
isStressing : boolean

1..n

0..1

1..n

0..1

0..n

0..1

0..n

0..1

0..n

1

0..n

1

0..n Surface
id : String (id)
name : string (id)
title : string (id)
xPosition : SFFloat (id)
yPosition : SFFloat (id)
zPosition : SFFloat (id)
height : SFFloat
material : Material
texture : X3DTexture2DNode
xOrientation : SFFloat (id)
yOrientation : SFFloat(id)
zOrientation : SFFloat (id)
angleOrientation : float (id)
top : SFFloat (id)
rigth : fixed (id)
width : SFFloat (id)

0..n

11

0..n

Figure 5. Environmental Model.

A Method for Developing 3D User Interfaces of Information Systems 95

To adhere to the principle of separation of concerns, the model is itself
decomposed into parts gathering attributes of the same area of interest. The
mapping rules applied to transform the AUI specification to CUIs. In this
case, CUI specifications result from the application of design rules in Trans-
formiXML. In Fig. 6, the screenshot reproduces the two worlds generated
for a Java3D environment, where each AC (provision personal data and an-
swer question) is mapped onto one scene at a time. All AICs belonging to
each AC are then mapped recursively onto Java3D widgets depending on
their data type. In this particular case, the designer selected also the graphi-
cal representation if any, along with the textual representing.

Figure 6. Java 3D representation of the polling system.

In this visualization, we propose another way to represent the category
selection. Instead of using a comboBox, or the traditional view of icons at-
tached to radio button, we proposed the use of 3D personages instead of
icons. This 3D graphic representation of the option could reinforce the un-
derstanding, notice that we keep the text below the personages.

96 González Calleros, Vanderdonckt, and Muñoz Arteaga

Figure 7. Polling system rendered in VRML

In Fig. 7, the decomposition of ACs is more fine-grained than in the pre-
vious cases: the information related to the person are first acquired in a rotat-
ing cube (which was selected as the container), then each pair of questions is
presented at a time with the facilities of going forward or backward like a
wizard. Since only 3 questions and one set of person information are consid-
ered, a cube is selected to present each part. If for any reason, more ques-
tions were defined, let us say 5, a regular volume with 6 faces would be gen-
erated instead. The description of the UI is not enough; we need an editor to
manipulate the 3D objects easily with an automatic feedback of the modifi-
cations done by the user. We use for this purpose Maya, by specifying a
Maya ASCII file as a result of the Abstract specification of the 3DUI. The
files is opened in the Maya editor (Fig. 8) and finally exported in a target
markup or programming language for virtual reality. Maya plug-ins offers,
among others exporters, RawKee (http://rawkee.sourceforge.net/), an open
source (LGPL) X3D plug-in, that exports Maya's 3D data as an X3D or
VRML file with support for scripting. Fig. 9 reproduces some snapshots of
the 3DUI rendered in VRML (Virtual Reality Markup Language).

The UsiXML specifications at the CUI could also be interpreted in VUI-
Toolkit, a rendering engine for 3D UIs specified in UsiXML in
VRML97/X3D. In the screenshot of the Fig. 10, we show the result of using
the Toolkit that generates the 3D rendering of how our polling system could
look in a 2D user interface. The 2D components have been enriched with
volumes. One can discuss that the components are rendered as 3D widgets in
a way that remains similar to the “Look & Feel” of 2D widgets, except that
the “Feel” is a genuine 3D behavior. According to this view, this kind of FUI
can be interpreted only as a 3D rendering of 2D UIs, even if their specifica-
tions are toolkit-independent [13]. This approach provides an option to the

A Method for Developing 3D User Interfaces of Information Systems 97

use of Java applets UIs to manipulate virtual applications in the Web, in-
stead, the use of the VUIToolkit would not disrupt the 3D “look”.

Figure 8. Edition of the 3DUI in Maya.

Figure 9. Rendering of the 3DUI interface for the polling system in VRML.

98 González Calleros, Vanderdonckt, and Muñoz Arteaga

Figure 10. 3D rendering of the 2D interface for the polling system in VUIToolkit.

4. CONCLUSION

 A method has been presented that decomposed the 3D UI development
life cycle into four steps ranging from the most abstract (CIM) to the most
concretes (PIM, then PSM) according to the principles of Model-Driven En-
gineering. The first step is intended to capture user requirements through a
task model manipulating information contained in a domain model. The sec-
ond step transforms this task model into an abstract UI model that is comput-
ing-independent. The third step supports in our case three transformations so
as to obtain three types of final rendering: interpretation of the CUI UsiXML
specifications in VUIToolkit (a 3D rendering engine that has been developed
for this purpose), in Java3D and in VRML97/X3D.

The feasibility of the approach is much depending on the amount and the
quality of the design rules that are also encoded in UsiXML. If a reasonably
extensive set of rules is used, the generated results are usable. If this is not
the case, the model resulting from the transformation could be considered as
underspecified. It is then required to manually edit within a XML-compliant
editor. Future work will therefore be dedicated to exploring more design op-
tions and encode them in UsiXML so as to serve better transformations. This
does not mean that a generated 3D UI is as usable or more usable than a
manually-produced one, but at least it could be obtained in a very fast way.
Moreover, the exploration of alternative design options could be facilitated
since they are operated at a higher level of abstraction than the code level.

A Method for Developing 3D User Interfaces of Information Systems 99

ACKNOWLEDGEMENTS

We gratefully thank the support from the SIMILAR network of excel-
lence (The European research taskforce creating human-machine interfaces
SIMILAR to human-human communication), supported by the 6th Frame-
work Program of the European Commission, under contract FP6-IST1-2003-
507609 (http://www.similar.cc), the Alban program (www.programalban.
org) supported by European Commission, and the CONACYT (www.cona-
cyt.mx) program supported by the Mexican government. All information re-
garding UsiXML is accessible through http://www.usixml.org.

REFERENCES
[1] Bowman, D.A., Kruijff, E., LaViola, J., and Poupyrev, I., 3D User Interfaces: Theory

and Practice, Addison Wesley, Boston, July 2004.
[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J.,

A Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, 2003, pp. 289-308.

[3] Celentano, A. and Pittarello, F., A Content Centered Methodology for Authoring 3D In-
teractive Worlds for Cultural Heritage, in D. Bearman, F. Garzotto (eds.), Proc. of Int.
Cultural Heritage Informatics Meeting ICHIM’2001 (Milan, 3-7 September 2001), “Cul-
tural Heritage and Technologies in the Third Millennium”, Vol. 2, 2001, pp. 315-324.

[4] Chapuis, O. and Roussel, N., Metisse is not a 3D Desktop, in Proc. of ACM Symposium
on User Interface Software and Technology UIST’2005 (Seattle, 23-26 October 2005),
ACM Press, New York, 2005, pp. 13-22.

[5] Conner, D.B., Snibbe, S.S., Herndon, K.P., Robbins, D.C., Zeleznik, R.C., and van Dam,
A., Three-Dimensional Widgets, in Proc. of the 1992 Symposium on Interactive 3D
Graphics, Special Issue of Computer Graphics, ACM Press, New York, pp. 183-188.

[6] Cuppens, E., Raymaekers, Ch., and Coninx, K., VRIXML: A User Interface Description
Language for Virtual Environments, in Proc. of the 1st ACM AVI’2004 Workshop “De-
veloping User Interfaces with XML: Advances on User Interface Description Lan-
guages” UIXML’2004 (Gallipoli, May 25, 2004), LUC-EDM, 2004, pp. 111-118.

[7] Fencott, C. and Isdale, J., Design Issues for Virtual Environments, in Proc. of Int. Work-
shop on Structured Design of Virtual Environments and 3D-Components at the
Web3D’2001 Conference (Paderborn, 19 February 2001).

[8] Fencott, C., Towards a Design Methodology for Virtual Environments, in Proc. of User
Centered Design and Implementation of Virtual Environments UCDIVE’99 Workshop
(York, 30 September 1999).

[9] Geiger, C., Paelke, V., Reimann, C., and Rosenbach, W., Structured Design of Interac-
tive Virtual and Augmented Reality Content, in Proc. of Int. Workshop on Structured De-
sign of Virtual Environments and 3D-Components at the Web3D’2001 Conference (Pad-
erborn, 19 February 2001).

[10] Katsurada, K., Nakamura, Y., Yamada, H., and Nitta, T., XISL: A Language for Describ-
ing Multimodal Interaction Scenarios, in Proc. of 5th Int. Conf. on Multimodal Interfaces
ICMI’2003 (Vancouver, 5-7 Nov. 2003), ACM Press, New York, 2003, pp. 281-284.

[11] Larimer, D. and Bowman, D., VEWL: A Framework for Building a Windowing Interface
in a Virtual Environment, in Proc. of IFIP TC13 Int. Conf. on Human-Computer Interac-
tion Interact’2003 (Zürich, 1-5 Sept. 2003), IOS Press, Amsterdam, 2003, pp. 809-812.

[12] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez-Jaquero, V.,

100 González Calleros, Vanderdonckt, and Muñoz Arteaga

UsiXML: a Language Supporting Multi-Path Development of User Interfaces, in Proc. of
9th IFIP Working Conf. on Engineering for Human-Computer Interaction jointly with
11th Int. Workshop on Design, Specification, and Verification of Interactive Systems
EHCI-DSVIS’2004 (Hamburg, 11-13 July 2004), Lecture Notes in Computer Science,
Vol. 3425, Springer-Verlag, Berlin, pages 207-228, 2005.

[13] Molina, J.P., Vanderdonckt, J., Montero, F., and González, P., Towards Virtualization of
User Interfaces based on UsiXML, in Proc. of the 10th Int. Conf. on 3D Web Technology
Web3D’2005 (Bangor, 29 March–1 April 2005), ACM Press, New York, 2005, pp. 169-
178.

[14] Montero, F., López-Jaquero, V., Vanderdonckt, J., Gonzalez, P., and Lozano, M.D.,
Solving the Mapping Problem in User Interface Design by Seamless Integration in
IdealXML, in Proc. of 12th Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSVIS’2005 (Newcastle upon Tyne, 13-15 July 2005), Lecture
Notes in Computer Science, Vol. 3941, Springer-Verlag, Berlin, 2005.

[15] Neale, H. and Nichols, S., Designing and Developing Virtual Environments: Methods
and Applications, in Proc. of Visualization and Virtual Environments Community Club
VVECC’2001 Workshop, Designing of Virtual Environments, 2001.

[16] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., and Montero, F., A
Transformational Approach for Multimodal Web User Interfaces based on UsiXML, in
Proc. of 7th Int. Conf. on Multimodal Interfaces ICMI’2005 (Trento, 4-6 October 2005),
ACM Press, New York, 2005, pp. 259-266.

[17] Sutcliffe, A., Multimedia and Virtual Reality: Designing Multisensory User Interfaces,
Lawrence Erlbaum Associates, Mahwah, 2003.

[18] Waterworth, J.A. and Serra, L., VR Management Tools: Beyond Spatial Presence, in
Proc. of ACM Conf. on Human Aspects in Computing Systems INTERCHI’93 (Amster-
dam, 24-29 April 1993), Addison-Wesley, Reading, 1993, pp. 319-320.

[19] Zakiul, S., Week 15 report on Project 6, accessible at http://www.public.asu.edu/
~zakiul/vrml/week15/week15.htm

