
A structured approach to support 3D User Interface Development

Juan Manuel González-Calleros1
Jean Vanderdonckt1

1Université catholique de Louvain,
Louvain School of Management
Place des Doyens, 1 – B-1348
Louvain-la-Neuve (Belgium)

{juan.m.gonzalez, jean.vanderdonckt}@uclouvain.be

Jaime Muñoz-Arteaga2

Sistemas de Información
Universidad Autónoma de Aguascalientes

Av. Universidad No. 940, Col. Bosques, 20100
Aguascalientes, Aguascalientes (México)

jmunozar@correo.uaa.mx

Abstract— Given its current state of the art, Model-Based UI
Development (MBDUI) is able to fulfill the major requirements
of desktop and mobile applications, such as form-based user
interfaces that adapt to the actual context of use. More recent
research deals with the development of 3D interactive
multimodal environments. Though user-centered design is
more and more driving the design of these environments, less
attention is devoted to the development processes than to
interactive tools supporting isolated phases in the realization
process. In this paper we present an attempt to structure an
approach to support 3DUIs development by introducing a
MBDUI compliant method. The development method is
articulated on three axes: models and their specification
language, approach, and tools that support the method based
on the underlying models.

Keywords: 3D user interfaces, transformational approach,
virtual reality, world model, scene model, model driven
engineering.

I. INTRODUCTION
All Few works have been reported in the literature

employing formalisms to describe Three-Dimensional User
Interfaces (3DUI) [15]. Many reports in the literature are
devoted to describe new interaction techniques or describe
software and hardware settings used in specific applications,
most of them presenting also user studies for experimental
evaluation. To cope with the ever increasing diversity of
markup languages, programming languages, toolkits and
interface development environments, including 3DUIs,
UsiXML (which stands for User Interface eXtensibe Markup
Language) proposes a conceptual modeling for developing
User Interfaces UIs [20]. The conceptual framework was
created for specifying, designing, and developing 3DUIs at a
level of abstraction that is higher than the level where code is
merely manipulated. For this purpose, a complete
environment has been created based on conceptual modeling
of user interfaces of information systems structured around
three axes: the models that characterize a 3DUI from the end
user’s viewpoint and the specification language that allows
designers to specify such interfaces, the method for
developing interfaces in forward engineering based on these
models, and a suite of tools that support designers in
applying the method based on the models. This environment

is compatible with the Model Driven Architecture (MDA)
recommendations in the sense that all models adhere to the
principle of separation of concerns and are based on model
transformation between the MDA levels. The models and the
transformations of these models are all expressed in
UsiXML and maintained in a model repository that can be
accessed by the suite of tools. Thanks to this environment, it
is possible to quickly develop and deploy a wide array of
user interfaces for different computing platforms, for
different interaction modalities, for different markup and
programming languages, and for various contexts of use.

The remainder of this paper is structured as follows:
section 2 summarizes related work, section 3 outlines the
general method, Section 4 introduces a case study and
progressively explains all steps of the method, and Section 5
concludes the paper and presents some avenue for future
work.

II. RELATED WORK
Different categories of software exist to support the

rendering of 3DUIs providing primitives for producing 3D
objects and their behaviors. These primitives are located at a
level that does not allow any straightforward use for
rendering higher level 3D widgets [15]. From these existing
environments, we can observe that most of them are more
oriented towards facilitating the life of the developer, but do
not necessarily address the concerns of the designer and
often forget the user requirements. It is not their purpose to
provide designers and analysts with a complete environment
that support them throughout the development life cycle [9].
These environments are usually restricted to only one
programming or markup language and do not allow easy
porting of code from one platform to another.

 Even that several methods have been introduced
[2][6][7][8][15] [17] to develop 3DUIs. They decompose the
software life cycle into steps and sub-steps, but these
methods rarely provide the design knowledge that should be
typically used for achieving each step. Our approach [9]
considers the complete life-cycle software development for
3DUI following a user-centered approach. Our method also
is user centered as explicitly models user’s task using the
task model. Also it relies on a MDA which is explicitly
based on the Cameleon Reference Framework [4], which

2009 Second International Conferences on Advances in Computer-Human Interactions

978-0-7695-3529-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ACHI.2009.14

75

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

defines UI development steps for multi-context interactive
applications.

III. STRUCTURED DEVELOPMENT OF 3DUI WITH USIXML
In software engineering, specification-based (or model-

driven) approach relies in the power of models to construct
and reason about software systems. This approach is based
on models. To generate them we need to identify the main
properties of real life objects. To do so some kind of
judgment is required. The goal of model-based approach, for
user interface development is to propose a set of abstractions,
development processes and tools enabling a engineering
approach of user interface development. The characteristics
of an engineering approach are its systematic (development
based of rational principles), its reproducibility, its
orientation towards quality criteria.

AUI production (IdealXML)

CUI production (TransformiXML)

3D Concrete
User Interface
#1 (UsiXML)

Maya
Development
environment

Java3D
code

HTML browser
withCortona player

Java3D Generator

Abstract user
interface #1

Domain modelTaskmodel

…

…

Abstract user
interface #2

Abstract user
interface #n

3D Concrete
User Interface

#3 (MEL)

VRML97/
X3D code

HTML browser
withCortona player

VRML97/X3D Generator

…

Step1

Step2

Step3

Step4

Task& Concepts

Abstract UI

ConcreteUI

Final UI

AUI:UI definition
independent of any
modalityof interaction

CUI:concretizesan AUI
intoCIOs(widget sets
foundin popular graphical
and vocal toolkits)

FUI:operational UI
that runson a
particularplatformeither
by interpretationor by
execution

3D Concrete
User Interface
#2 (Java3D)

VRML97
code

HTML browser
withCortona player

VUIToolkit

AUI production (IdealXML)

CUI production (TransformiXML)

3D Concrete
User Interface
#1 (UsiXML)

Maya
Development
environment

Java3D
code

HTML browser
withCortona player

Java3D Generator

Abstract user
interface #1

Domain modelTaskmodel

…

…

Abstract user
interface #2

Abstract user
interface #n

3D Concrete
User Interface

#3 (MEL)

VRML97/
X3D code

HTML browser
withCortona player

VRML97/X3D Generator

…

Step1

Step2

Step3

Step4

Task& Concepts

Abstract UI

ConcreteUI

Final UI

AUI:UI definition
independent of any
modalityof interaction

CUI:concretizesan AUI
intoCIOs(widget sets
foundin popular graphical
and vocal toolkits)

FUI:operational UI
that runson a
particularplatformeither
by interpretationor by
execution

3D Concrete
User Interface
#2 (Java3D)

VRML97
code

HTML browser
withCortona player

VUIToolkit

Figure 1. The Simplified User Interface Reference Framework. Source [9]

Our methodology, Figure1, structures development
processes into four development steps:

1) Task & Concepts (T&C): describe the various user’s
tasks to be carried out and the domain-oriented concepts as
they are required by these tasks to be performed.

2) Abstract UI (AUI): defines abstract containers (AC)
and individual components (AIC) [11] two forms of
Abstract Interaction Objects (AIO)[19] by grouping
subtasks according to various criteria (e.g., task model
structural patterns, cognitive load analysis, semantic
relationships identification), a navigation scheme between
the container and selects abstract individual component for
each concept so that they are independent of any modality.

3) Concrete UI (CUI): concretizes an abstract UI for a
given context of use into Concrete Interaction Objects
(CIOs) [19] so as to define widgets layout and interface
navigation. It abstracts a FUI into a UI definition that is
independent of any computing platform. For example, in

Envir3D [21], the CUI consists of a description of
traditional 2D widgets with mappings to 3D by relying on
different mechanisms when such a mapping is possible.

4) Final UI (FUI): is the operational 3DUI i.e. any
3DUI running on a particular computing platform either by
interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive
development environment.

IV. CASE STUDY
In this section we use the student/trainer system case

study to illustrate our method. The development scenario is
the following: a forward engineering path is applied from a
definition of the task and domain viewpoint to produce both
an abstract user interface (AUI) and concrete user interface
(CUI). For that purpose several are applied. For space
reasons just those more relevant are shown.

The following scenario illustrates the problems and the
need for such a toolkit: due to beginning of the new
academic year an education institute specialized in courses
for people who is working needs to calculate the number of
student per trainer for the each course accordingly to
different variables: number of available trainers, salary per
trainer, trainer working days, annual working days for
students, students salary average and number of students. So
far the school has been using an excel spreadsheet however
manipulating variables imply some usability disadvantages,
boundaries for the variables are not visually available, also,
manipulate the value of a variable has two steps type the
value then press enter, any other change has to follow the
same procedure. They would prefer to manipulate variables
using a dedicated UI more interactive were they can select
the value of the variables in a flexible way, such is the case is
they were using sliders.

Figure 2. Task & Concepts of the student/trainer system

A. Step 1: From task to Abstract User Interface Model
The task model, the domain model Figure 2, and the

mappings between, are all graphically described using
IdealXML tool [13], an Interface Development Environment

76

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

for Applications specified in UsiXML. The task tree,
depicted using CTT notation, shows the envisioned system.
The root task consists of student/trainer is decomposed in
two task, one for calculating student per trainer and the
second task to exit the system at any time. Calculating
student/trainer is divided in two tasks; one where the user
selects the variables and the second is a system task where
the result is calculated and shown to the user. The user can
change any variable iteratively but any change is transferred
automatically to the system task to update the result.

UsiXML transformational approach [20] is based on
graph transformations. The final result of the rules applied to
the task model to obtain an AUI is depicted in Figure 3.

Figure 3. An Abstract User Interface of the of the student/trainer system

in IdealXML [13]

In Figure 3 the big square denotes an abstract container
(AC). For the example all task that are not leafs became
ACs. They were obtained using the following transformation
rule (Figure 4): for each task 1:Task decomposed in any
other task 2:Task the Left Hand side (LHS) is the rule is
matched then the right hand side (RHS) creates for the task
1:Task a relationship that tells that the task is executed in an
AC. Negative Application Conditions (NAC) determine
conditions to prevent the rule to apply. In this case the NAC
prevent infinite loops because if a task has been already
assigned with a relationship IsExecutedIn an AC then no
new relationship is created.

The abstract individual components (AIC) depicted
inside the big rectangles corresponds is an abstraction that
allows the description of interaction objects in a way that is
independent of the modality in which it will be rendered in
the physical world. An AIC may be composed of multiple
facets. Each facet describes a particular function an AIC may
endorse in the physical world. Four main facets are
identified: an input facet describes the input action supported
by an AIC, for instance selecting a value from a range; an
output facet describes what data may be presented to the user
by an AIC, for instance, showing the summary of the bank
transfer to a client; a navigation facet describes the possible

container transition a particular AIC may enable, for
instance, each navigation arrow in a browser has a navigation
facet; and a control facet describes the links between an AIC
and system functions i.e., methods from the domain model
when existing. For this example task the prevalent task of the
system is the selection of a value then the AIC must have an
input facet (). The transformation rule to create this facet
on each AIC (Figure 5) creates this facet in the RHS side
when the rule match LHS a task that manipulates an element
where the actionType attribute of the task is select. We will
come back later to this attribute of the task that play an
important role in further transformations.

NAC LHS RHS

::=

NAC LHS RHS

::=

Figure 4. Create an AC for task that has task children

Figure 5. Create an input facet of type select

In this example no navigation facets are needed but for
the system tasks AICs with control () and output ()
facet were created.

B. Step 2: From Abstract User Interface Model to
Concrete User Interface Model
Before describing the next transformation the concrete

user interface objects are described. Creating 3D widgets
demands a lot of effort at several levels, first of all
abstracting the attributes of the 3d widgets, then
implementing the 3D widget and finally defines when this
widget is appropriate to concretize the AIO. To illustrate this
process the 3D slider is discussed in this section.

The attributes of the 3D slider are: label: string
containing the label to be displayed on the slider; Min:
integer value denoting the minimum value; Max: integer
value denoting the maximum value; Orientation: string value
denoting whether the slider is horizontal, vertical or inclined;
current value: integer value denoting the current selected
value of the slider; shape: string value denoting the shape of
the object cylinder, sphere, cone, or any valid value
depending on the implemented version of the 3D slider; step:
integer value determining the number of steps dividing the

77

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

range of values for slider; isVisible: boolean attribute that
determines if the slider is visible or not; isEnable: boolean
attribute that determines if the slider is enable or not;
transparency rate: double value indicating the transparency
of the object rangin from 0.0 to 1.0; paint Track: boolean
value indicating if the track is shown or not; SnapToTicks:
Boolean value indicating if the selected value must move to
the closest mark.

The next step consists on identifying the possible
representation of the 3D widget. In Figure 17 the different
variant for the slider are shown. We rely on a 3D widgets
Taxonomy to determine the possible graphical representation
of the slider, see Figure 6.

Figure 6. Three-Dimensional presentation of a slider

Then the representation of the 3D widgets was selected
using the question and answer mechanism proposed in [12].
Accordingly to this method, a set of criteria can be evaluated
when a question is raised and a set of possible answers exists
(3D renderings in this case). In this case four criteria were
identified to consider: 2D to 3D consistency, easy to
develop, intuitional and the usability. The weight attributed
to each criterion was based on the authors’ past experience
though the development of 3D and haptic applications [10].

In Figure 7 this process for the 3D slider is presented.
The meaning of the links are: the darkest solid line (++)
means strongly supported, dark solid line (+) means
supported, solid line (~) means neutral, dash lines (-) means
denied and dot lines (..) means strongly denied. In this case
the question is “What will be the representation of a 3D
slider?”. The possible answers are four: The 2D
representation, 3d representation, innovative and haptic. The
evaluation shows that the if the basic criterion is to keep
consistency between 2D and 3D , the 2D presentation should
be chosen; in terms of complexity of the development the
switch was identified as the most complicated to be
developed. Regarding the intuition criterion, the sphere

seems to be is the only one that could produce
misunderstanding problems.

Finally, the usability of any of these presentations would
not be a problem; however is considered that the haptic and
the 2D presentation could be more effective as they are more
intuitional and have more consistency with the 2D already
known component. Notice that this analysis only provides a
general view of the different properties related to the
development of the 3D widgets and does not arrives at a
conclusion about which representation is generally the best.

Figure 7. Criteria to select the 3D slider

The next step is the implementation of the widget. The
rage of values of the slider even that rendered in 3D is just in
one dimension. Depending on the orientation the
corresponding axis is considered, for instance if the slider is
vertical then x-axis is used. Another issue to consider is that
while the knob is moved in 3D coordinates the
corresponding mapping to an integer value for the real value
for the slider is calculated using the formula shown in Figure
8.

Figure 8. Implementation of the 3D slider

Another interesting problem was the track line to move
along with the knob of the slider (Figure 9). It involves
scaling and translating the track accordingly to the current
value of the knob. Following the same principle used for the
knob value (Figure 8), 3D virtual coordinate values were
mapped for both scale and translation parameters of the track
line. Scaling and translating for this particular example is
commutative, translation after scaling and scaling after
translation has the same result.

78

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

Figure 9. Track following the knob for the 3D slider

Figure 10. Solution to the scale and translation for the track of the 3D

slider

The next step of the transformation consists on
transforming the AUI into CUI. This step is achieved by
relying on a transformation tool TransformiXML [20]. The
CUI can be edited in a 3D editor as shown in Figure 11.
Using a 3D editor allows manipulation of 3D widgets to
determine their position on the 3D scene. So, based on
existing 3D widgets the concretization of the abstract
interaction objects (AIOs), i.e. AC and AIC into Concrete
Interaction Objects (CIOs), i.e., 3D graphical concrete
interaction objects (3DGCIO) which can be 3D graphical
containers (3DGC) and 3D graphical Individual Components
(3DGIC).

Figure 11. A C UI editor with the student/trainer system

The transformation rules used for this step use the
attributes of the AUI action type and action item. In our
example so far the user action is of type select and the task

item is an element (Figure 5). Combining these attributes and
attributes from the input facet (input card Min and max
denoting a range of values) then a slider is selected for each
AIC (Figure 12). The element to show the result of the
calculation is transform into an output text (Figure 13).

Figure 12. Mapping rule for slider selection

Figure 13. Mapping rule for output text selection

C. Adding the behavior to the CIO
Using formalisms to model interaction in virtual

environments has many benefits: allows measuring the
impact of changing input devices and/or interaction
techniques before actually implementing them, detecting
similarities and dissimilarities in the behaviors, and
evaluating the effects of these dissimilarities in the prediction
of user performance [15]. In our case we rely on the formal
method based on Petri Nets presented in [22]. Petri net is a
behaviour-based formal method, which is a promising tool
for modeling concurrent systems [17]. Petri nets were
selected because of their sound mathematical foundation
which provides precise notations for constructing
mathematical models of a target system. Using this formal
specification allows reasoning about the system, either
formally or informally but rigorously [22].

The Petri net model of that environment captures the
state change of each object and describes the whole system.
The event model (Figure 15) provides the necessary
information about possible user interactions. In this case the
example shows the meta-model two event sensors. The
sensor is compatible with the definition promoted by the
standard Extensible 3D (X3D) for cross-platform, inter-
application 3D content delivery.

In our example, the Petri net (Figure 14) denote the min
and max values for the correct calculation of the current
value of the slider, these attributes were used for selecting
the slider as a CIO in Figure 12. Each slider is denoted as an
object (ovals in Figure 14) a sensor is attached to it.

79

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

10≤CalcValue(x,y)≤100

<x,y> <x,y>

<x.y>

Trainers

Traier
Salary

Student
Salary

Students

TrainerWor-
kingDays

AnnualWor-
kingDays

UpdateAnnualWorkingDays

Students
PerTrainer

UpdateStudentsPerTrainer

0≤CalcValue(x,y)≤300

<x,y>

0≤CalcValue(x,y)≤100

10≤CalcValue(x)≤100

10≤CalcValue(x,y)≤300

<x,y>

200≤CalcValue(x,y)≤300

<a>

<a>

<c>

<c>

<d>

<e>

<d>

<e>

<f>

<f>

<g>

UpdateTrainers

UpdateStudentSalary

UpdateTrainerSalaray UpdateTrainerWorkingDays

UpdateStudents
a= CalcValue(x ,y)

d= CalcValue(x ,y)

e= CalcValue(x,y)

b= CalcValue(x,y)

c= CalcValue(x ,y)

f= CalcValue(x ,y)

g= CalcValue(a,b,c,d,e,f)

<x,y>

Figure 14. Dialogue on Object Oriented Petri Net for the student/trainer system

Each sensor (rectangles in Figure 14) has its own code to
calculate the appropriate value depending on their min, max
value. Any change on any slider will then trigger an event to
the main sensor that is connected with all the sliders. This
event modifies the value of the student/ trainers object.

The Petri net can be mapped into the CUI specification
using the same editor, Vivaty Studio (www.vivaty.com), as
the one used for editing the CUI, From the Petri net every
slider has a sensor connected to it, this sensor evaluates
applies when there is a translation and modifies the current
value of the slider. By analogy the rest of the sensors are
interconnected with the corresponding objects.

Figure 15. Event Model for the Mapping rule for output text selection

D. Step 4: From Concrete User Interface Model to Final
User Interface

The last step is to generate the code for the 3D scene.

Vivaty studio support several file type options for the final
execution of the 3D world. In our case we were just
interested in X3D and VRML code. The final result of our
method can be seen in Figure 16.

Figure 16. A final rendering of the of the student/trainer system

V. CONCLUSION
In this paper, we have introduced a 3DUI Engineering

methodology articulated on three axes: models and their

TimeSensor
cycleInterval : Time
cycleTime : Time
time : Time

<<out>> fraction_changed()

PointingDeviceSensorNode
description : String

<<out>> isOver()

TouchSensorNode
<<out>> touchTime ()

TouchSensor

<<out>> hit_Normal_changed()
<<out>> hitTexCoord_changed : SFVec2f()
<<out>> hitPoint_changed : SFVec3f()

Sensor
enabled : Boolean
id : s tring

<<out>> isActive()

80

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

specification language, method, and tools that support the
method based on the underlying models. All aspects are
stored in UsiXML (www.usixml.org) files that can be
exchanged, shared, and communicated between stakeholders
(designers, developers, and end users). It has been
demonstrated that the global methodology adheres to the
principles of MDA and is therefore compliant, except for the
standardization process which is ongoing.

The advantages of using this method are that supports:
Modifiability: If there is a change in a model then the 3DUI
changes accordingly; Complexity: As it provides ways to
address complexity, huge quantity of code, as well as the
reliability; Safety Critical: to warranty and investigate
3DUI’s behavior, models are needed. The use of a formal
specification technique is extremely valuable, because it
provides non-ambiguous, complete and concise ways of
describing the behavior of the systems; Rigorous: The
development life cycle of the 3DUI involves the same level
of rigor that is typically used in software engineering;
Reasoning: Because from the models describing the 3DUI
some reasoning is possible, such as: Automatic. Computer
based system might analyze data related to the 3DUI
automatically and might be able to predict pilots behavior;
Production of errors; Processable. Models can be processed
and studied by devoted systems; Checking properties.
Analysis of the different effects produced in the 3DUI by
modifying properties of the components, for instance,
changing background color, fonts of labels, etc; Human
readable. This is not necessarily always achieved but model
are expected to be understandable for humans.

Still this method presents some disadvantages; our main
concern is that it is likely that the model transformations of
bigger systems will be more complex to discover and to
apply, so it is not clear if the solution is computationally
feasible considering the amount of operations needed to
perform graph transformations.

REFERENCES
[1] Bastide, R., Navarre, D., Palanque, P., Schyn, A., Dragicevic, P. A

Model-Based Approach for Real-Time Embedded Multimodal
Systems in Military Aircrafts. Sixth International Conference on
Multimodal Interfaces (ICMI'04), Pennsylvania State University,
USA. October 14-15, (2004)

[2] Bowman, D.A., Kruijff, E. , LaViola, J. and Poupyrev, I. “3D User
Interfaces: Theory and Practice”, Addison Wesley, Boston, July 2004.

[3] Buxton, W. A three-state model of graphical input. In: 3rd IFIP
International Conference on Human-Computer Interaction,
INTERACT’90, Cambridge, UK, 27-31 August (1990) 449-456

[4] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J.: A Unifying Reference Framework for Multi-Target
User Interfaces. Interacting with Computers, Vol. 15, No. 3 (June
2003) 289–308.

[5] Campos, J. C., Harrison, M. D. Formally verifying interactive
systems: A review. In Design, Specification and Verification of
Interactive Systems '97, Springer Computer Science, Springer-
Verlag/Wien (1997), 109-124

[6] Celentano, A. and Pittarello, F. (2001). “A content centered
methodology for authoring 3d interactive worlds for cultural
heritage”. D Bearman, F Garzotto, Eds., International Cultural
Heritage Informatics Meeting, ICHIM, Cultural Heritage and

Technologies in the Third Millennium, Milán, 3-7 September 2001,
Vol. 2 pp. 315-324, Politecnico di Milano, Italia y Archives &
Museum Informatics, Pittsburgh, PA, USA, Italia, 2001.

[7] Fencott, C. and Isdale, I. “Design Issues for Virtual Environments”.
International Workshop on Structured Design of Virtual
Environments and 3D-Components at athe Web3D 2001 Conference.
Paderborn, Alemania, 19 Febrero 2001.

[8] Geiger, C., Paelke, V., Reimann, C. C., and Rosenbach, W.
“Structured Design of Interactive Virtual and Augmented Reality
Content”. International Workshop on Structured Design of Virtual
Environments and 3D-Components at the Web3D 2001 Conference.
Paderborn, Alemania, 19 February 2001.

[9] Gonzalez Calleros, J.M., Vanderdonckt, J., Arteaga, J.M., A Method
for Developing 3D User Interfaces of Information Systems, Proc. of
6th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI'2006 (Bucharest, 6-8 June 2006), Chapter 7, Springer-Verlag,
Berlin, 2006, pp. 85-100.

[10] Kaklanis, N., González-Calleros, J. M., Vanderdonckt, J. Tzovaras,
D.: A haptic rendering engine of web pages for blind users. AVI
2008, ACM press, pp. 437-440.

[11] Limbourg, Q., Multi-path Development of User Interfaces. Ph.D.
thesis. Université catholique de Louvain, IAG-School of
Management. Louvain-la-Neuve (Nov. 2004).

[12] MacLean, A., Young, R.M., Bellotti, V., and Moran, T.P. Questions,
Options, and Criteria: Elements of Design Space Analysis. Human-
Computer Int. 6, 3-4 (1991) 201–250.

[13] Montero, F., Lozano, M., González, P.: IDEALXML: an Experience-
Based Environment for User Interface Design and pattern
manipulation. Technical Report DIAB-05-01-4. Universidad de
Castilla-La Mancha, Albacete (2005).

[14] Navarre, D., Palanque, P. Schyn, A., Winckler, M., Nedel, L.P. and
Freitas, C.M.D.S. A Formal Description of Multimodal Interaction
Techniques for Immersive Virtual Reality Applications. In:
Proceedings of INTERACT 2005, Rome, Italy, Springer-Verlag
GmbH, v. 3585, p. 170-183, 2005.

[15] Neale, H. and Nichols, S. Designing and developing Virtual
Environments: methods and applications. Visualization and Virtual
Environments Community Club (VVECC) Workshop, Designing of
Virtual Environments. 2001.

[16] Nedel, L.P., Freitas, C.M.D.S., Jacob, L.J., and Pimenta, M.S.
“Testing the Use of Egocentric Interactive Techniques in Immersive
Virtual Environments”. In: Proceedings of INTERACT 2003, IOS
Press, p. 471–478, 2003.

[17] Peterson, J. L. Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[18] Sutcliffe. A. “Multimedia and Virtual Reality: Designing
Multisensory User Interfaces”. Lawrence Erlbaum Associates, 2003.

[19] Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for
Intelligent Automatic Interaction Objects Selection. In: Proc. of the
ACM Conf. on Human Factors in Computing Systems INTERCHI'93
(Amsterdam, 24-29 April 1993). ACM Press, New York (1993) 424–
429.

[20] Vanderdonckt, J. A MDA-Compliant Environment for De-veloping
User Interfaces of Information Systems. In Proc. of 17th Conf. on
Advanced Information Systems Engineering CAiSE'05 (Porto, 13-17
June 2005), LNCS, Vol. 3520, Springer-Verlag, Berlin, 2005, pp. 16-
31.

[21] Vanderdonckt, J., Bouillon, L., Chieu, K.C., Trevisan, D.: Model-
based Design, Generation, and Evaluation of Virtual User Interfaces.
In: Proc. of 9th ACM Int. Conf. on 3D Web Tech. Web3D’2004
(Monterey, April 5-8, 2004). ACM Press, New York (2004) 51–60.

[22] Ying, J., & Gračanin, D. An approach to Petri net based formal
modeling of user interactions from X3D content. In Proceedings of
the eleventh international conference on 3D web technology, ACM
Press, New York (2006) 153-157.

81

Authorized licensed use limited to: Saerens Marco. Downloaded on March 8, 2009 at 09:20 from IEEE Xplore. Restrictions apply.

