
Splitting Rules for Graceful Degradation of User Interfaces 

Murielle Florins 
IAG/ISYS 

Université catholique de Louvain 
Place des Doyens, 1 

B-1348 Louvain-la-Neuve, 
Belgium 

florins@isys.ucl.ac.be 
 

Francisco Montero Simarro 
Escuela Politécnica Superior de 

Albacete 
Universidad de Castilla-La 

Mancha 
Campus Universitario s/n 

02071 Albacete, Spain 

fmontero@info-ab.uclm.es 

Jean Vanderdonckt, 
Benjamin Michotte 

IAG/ISYS 
Université catholique de Louvain 

Place des Doyens, 1 
B-1348 Louvain-la-Neuve, 

Belgium 

{vanderdonckt,michotte} 
@isys.ucl.ac.be 

   
ABSTRACT 
This paper presents a series of new algorithms for paginating 
interaction spaces (i.e.; windows, dialog boxes, web pages…) 
based on a multi-layer specification in a user interface description 
language. We first describe how an interaction space can be split 
using information from the presentation layer (Concrete User 
Interface). We then demonstrate how information from higher 
levels of abstraction (Abstract User Interface, Task model) can be 
used to produce a pagination that is more meaningful from the 
task’s viewpoint than other techniques. The pagination relies on a 
set of explicit splitting rules that can be applied as the first step in 
a graceful degradation. These splitting rules are implemented as 
an interface builder plug-in which automatically generates code 
under the designer’s control. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and techniques]: User Interfaces 

General Terms 
Design, Human Factors 

Keywords 

Design, graceful degradation, multiplatform systems, pagination, 
splitting rules 
1. INTRODUCTION 
The task of designing user interfaces for multiple platforms 
simultaneously is difficult and time consuming: user interfaces 
have always represented an important part of the software 
development and maintenance effort, even for traditional 
applications designed with a single target platform in mind. The 
designer’s task is made more difficult when several devices like 
desktops, mobile phones or PDA's have to be taken into account, 

for two reasons:  
- Usability: producing usable user interfaces for each platform-
specific version of a system is difficult, due to differences 
between the capabilities of the different devices and softwares 
- Cross-platform consistency: users expect to be able to employ 
their knowledge of a given version of the system when using the 
same service on another platform, thus the different versions 
should not be too different  
A lot of design methods and adaptation techniques that produce 
multiple UIs simultaneously for different platforms have been 
investigated (see, inter alia, [1, 2, 3, 6, 7, 10, 18, 20]). Our 
approach to the design of multiplatform user interfaces, known as 
‘graceful degradation’ of UIs [9], consists in specifying one 
source interface, designed for the least constrained platform, and 
to apply transformation rules to this source interface in order to 
produce specific interfaces targeted to more constrained platforms 
(which is sometimes referred to in the literature as a “single 
authoring” method [7][8]). The transformation process can be 
decomposed into five steps ranging from the highest level of 
granularity to the lowest one: 

1. Splitting rules are applied to split the initial UI into chunks 
that are logically or semantically related; 

2. Interactor and image transformation rules (e.g., widget 
substitution) are applied to transform the widgets of the initial 
UI into smaller widgets, while supporting the same 
functionalities; 

3. Moving rules are applied to reshuffle widgets to obtain a UI 
that consumes less screen space; 

4. Resizing rules are applied to shrink widgets and images or to 
re-align them after they have been moved; 

5. Removal rules are applied to delete unnecessary or less useful 
widgets while preserving the main purpose of the initial UI. 

Pagination is perhaps the most difficult and significant step of the 
whole graceful degradation process. Splitting generates important 
changes into the very structure of the UI, has an important 
influence on the quality of the final results, and is appreciated by 
users that consider it as one of the most useful GD rules [12].This 
paper presents a full implementation of splitting rules (also called 
pagination rules) and their underlying concepts and related 
algorithms. Automatic pagination is a complex problem that has 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
AVI’06, May 23-26, 2006, Venice, Italy. 
Copyright © 2006 ACM 1-59593-353-0/06/0005…$5.00. 

59



been partially addressed in the existing studies that are described 
in Section 2. Section 3 presents a reference framework that will 
be extensively used in the rest of the paper. Splitting will be 
examined at two levels of abstraction: concrete UI (Section 4) and 
abstract UI (Section 5) with information contained in the task 
model. Section 6 will demonstrate how software developed for 
graceful degradation supports splitting rules. Section 7 concludes 
the paper by reporting on the main advantages and shortcomings 
of the work and suggesting some avenues for future work. 

2. DISCUSSION OF RELATED WORK 
2.1 State of the art 
Pagination is an important adaptation technique which minimizes 
the need for scrolling on small displays. Excessive depth of 
vertical scrolling has been demonstrated to remain an obtrusive 
usability problem [10]. Pagination for redistributing web pages 
(e.g., forms, text, images) among several pages has been widely 
researched, but less attention has been paid to graphical user 
interfaces (GUIs) as a whole general problem for any platform. 
The Covigo library of special tags for HTML [15] implements 
pagination of web pages at run-time, using simple heuristics such 
as breaking every fifth <tr> or breaking by size. RIML [19] 
defines additional mark-up for specifying the layout and 
pagination capabilities of web pages. The new mark-up 
delimitates sections, which are the UI building blocks, and 
associated containers. Each container can be specified as a 
paginating container. After pagination, the sections that belong to 
a paginating container can be distributed over different pages, 
while the content of non-paginating containers will be repeated on 
each resulting page.  
Unlike the two first approaches, Watters and Zhang’s [21] 
approach can process any pre-existing HTML form, not only 
newly created page specifications. Their algorithm segments 
forms into a sequence of smaller forms, using partition indicators 
such as horizontal lines, nested lists and tables. Of course, 
grouping directives induced from the ‘partition indicators’ within 
the code are less accurate than they would have been in an 
explicit specification. Complex layout relationships (e.g. use of 
tables for layout purpose) probably constitute a bottleneck for 
such approaches. This algorithm is restricted to HTML forms 
only. Splitting pre-existing Web pages is also the concern of Chen 
& al. [6]. Their technique consists of three steps. First, the high-
level content blocks typical in current Web site designs (header, 
footer, sidebars, and body) are identified by analysing the position 
and dimension of the nodes in the HTML DOM tree. Afterwards, 
each block can be further partitioned by detecting “explicit 
separators” i.e., tags such as <HR>, <TABLE> or <DIV>. The 
last step consist in finding “implicit separators” i.e., blank spaces. 
Once the page split into fragments, an index page linking to each 
subpage is produced by generating a thumbnail image of the 
original Web page, with the appropriate hyperlinks. 
To overcome the language restriction, another group of 
approaches relies on a generic UI description in a user interface 
description language (UIDL) that is at a higher level than the 
markup and programming languages. Göbel et al. use an XML-
based dialog description language (DDL) especially aimed at 
describing web-based dialogs in a device-independent way. A 
DDL dialog is composed of containers and other elements such as 
controls and images. Containers whose elements must appear 

together are called atomic. Elements are assigned weights 
indicating their resource requirements in terms of memory and 
screen size. Fragments with similar weights are generated, while 
respecting the integrity of atomic containers. Navigation elements 
are added to permit navigation between dialog fragments. No 
indication is given on how weights should be assigned to leaf 
elements, which is a difficult task, especially for multiplatform 
rendering. Ye & Herbert [22] apply similar heuristics to an XUL 
UI description by exploiting the hierarchy of widgets and 
containers, while respecting the value of a ‘breakable‘ attribute 
attached to each component, which has to be explicitly provided 
by the designer. PIMA [1] also relies on a UIDL, which is 
converted into multiple device-specific representations. This 
conversion includes a splitting process. Like other approaches, 
PIMA’s algorithm uses grouping constraints as well as 
information on size constraints. PIMA also takes navigation into 
account and the possibility of applying distinct navigation policies 
between screens resulting from a splitting process. 
While the fragmentation methods enumerated so far mostly work 
on a hierarchy of interface components (i.e. on elements related to 
the presentation of the UI), the splitting algorithm of the Roam 
system [5] takes as its input a tree structure combining a task 
model, which is only a hierarchy of tasks without temporal 
constraints, and a layout structure. The nodes of the tree can be 
annotated as splittable or unsplittable. Roam’s algorithm does not 
attempt to find the best place to split, but merely places the extra 
widgets that do not fit in a page onto a new page (no scrolling is 
allowed). Navigation between the new pages is also generated, 
although without a lot of flexibility.  

2.2 Requirements 
To overcome the shortcomings identified in existing pagination 
techniques, our splitting approach should satisfy the conditions: 
− Be language-independent, not tied to a given technology: we 

do not want to write a separate set of algorithms for HTML 
pages [6, 15, 19, 21] and another one for AWT/Swing 
windows. 

− Not introduce any additional construct, no need for yet 
another mark-up language specially designed to support 
pagination, nor any additional language constructs (unlike 
[19]). 

− Be fully controlled by the designer. With the exception of 
RIML [19], which allows some customization of the size limit 
applied to generated pages, all the approaches described above 
are fully automatic; no human control is envisaged. 

− Use semantic information to help the designer determine 
where to split: information on ‘breakable’ or ‘splittable’ 
fragments is useful, but not very rich semantically. When 
higher-level specifications, especially task models, are 
available (as in [5]), these specifications must be used to 
refine the splitting process. In particular, the temporal 
relationships between tasks must be used, which is not the 
case in [7]. 

− Be able to adapt the dialog (i.e., the transitions between pages 
or windows) in a flexible, customizable way. Most of the 
splitting approaches do not fulfil this requirement. 

3. THEORETICAL FRAMEWORK 
Our approach, like many others, relies on a high level description 
of the initial user interface. This description will be expressed in 
the user interface description language UsiXML. The principles 

60



set out, however, are generally applicable, and other mark-up 
languages could be used alternatively.  
UsiXML is structured in four abstraction levels; following the 
reference framework introduced by Calvary et al. [5] and known 
as the “CAMELEON framework” (see fig.1) 
 

 

 

 

Figure 1. The four abstraction levels in the CAMELEON 
framework 

The Final User Interface (FUI) refers to the actual user interface, 
which will be interpreted or rendered on a given computing 
platform. It is expressed in source code (e.g. Java or HTML).  

The Concrete User Interface (CUI) abstracts the Final user 
Interface into a definition that is independent of any programming 
language. The CUI contains a detailed description of the user 
interface in terms of widgets (Concrete Interaction Objects in 
UsiXML), layout, navigation and behaviour. Fig.2 illustrates the 
structure of the CUI of a simple information retrieval system.  

 
Fig.2 Some elements of a CUI model 

The Abstract User Interface (AUI) abstracts a Concrete User 
interface into a UI definition that is independent of any modality 
of interaction. The AUI is an expression of the UI in terms of 
interaction spaces, i.e. the grouping of tasks that have to be 
presented together, in the same window or page for example. In 
UsiXML, the AUI is populated by Abstract Components and 
Abstract Containers. Abstract Components are composed of facets 
describing the type of interactive tasks they are able to support 
(input, output, control, navigation). Fig.3 shows a representation 
in the IdealXML environment [16] of the AUI level 
corresponding to the Concrete user interface exemplified on fig.2. 

 
Fig.3 Graphical representation of a AUI model in the 

IdealXML environment 
At the top of the framework, the Tasks and Concepts level 
describes the interactive systems’ specifications in terms of the 
user tasks to be carried out and the domain objects manipulated 
by these tasks. The Tasks and Concepts level in UsiXML reuses 
existing formalisms: CTT [17] for the representation of tasks and 
class diagrams for the domain model. One peculiarity of UsiXML 
is that this level may be embedded into the specification and is 

not considered as a separate artefact only used in the requirement 
analysis development stage. Fig.4 shows the task model 
corresponding to the same user interface described above at the 
concrete and abstract level. 

 
Fig.4 Graphical representation of the CTT-based task model 

in UsiXML 

4. SPLITTING AT THE CUI LEVEL 
Not all the layers listed above are mandatory in a user interface 
specification in UsiXML. In the simplest case, we suppose that 
the designer has just produced a description of the Concrete User 
Interface (CUI). The CUI may have been build by hand, using 
any XML editor or text editor, or with a graphical editor 
(GrafiXML), or recovered from existing code using reverse 
engineering tools (Vaquita [4]). 
Different constructs in the CUI model of UsiXML can be used for 
pagination purposes: 
− The layout of each container (window, dialog box…) is 

specified using embedded boxes. Those boxes are declared 
as splittable or not, which is the basic ingredient for 
pagination.  

− Each container and each component of the CUI is marked as 
pageable or not. Pageable components can be distributed 
between the graphical containers created during the splitting 
process, while non pageable components have to be present 
in each fragment. For example, a menu bar or a widget 
permitting to logout from the system could constitute non 
pageable components, because their presence in each 
container is useful. 

− Transitions can be specified between each pair of containers. 
Implementing splitting rules starting from such a model is quite a 
straightforward process: the splittable attribute indicates where to 
split, and the pageable attribute indicates which elements will be 
duplicated. When several boxes are splittable, we choose the 
most-outer box. 
Each execution of our splitting rules is fully controllable and 
configurable by the designer. The parameters taken into account 
by the algorithm are: 
− The number of interactive spaces at output. By default, we 

take the number of boxes directly embedded into the main 
container (level 1–boxes). 

− The content of the n interactive spaces at output. By default, 
we take the content of each level 1–box, but the designer is 
allowed to select content by drag-and-drop. 

− The names assigned to each interactive space at output, 
which will be used as windows titles and for widgets 
pointing to these interactive spaces. By default, names are 
automatically generated by suffixing the original name. 

One last parameter, namely the type of transitions generated 
between the new interaction spaces, deserves a little more 
explanation.  

Tasks & Concepts 

Abstract User Interface 

Concrete User Interface 
Final User Interface 

61



As the dialog model of UsiXML does not possess a graphical 
representation yet, we will represent the behavioural aspects as 
statecharts. We have considered four types of transitions between 
the interaction spaces generated by the splitting algorithm 
(hereafter target interaction spaces): 
− Linear navigation (fig.5) establishes transitions between one 

target interaction space and another interaction space 
considered as its successor. It is typically realized with 
“next-previous” links or buttons. This type of navigation 
offers the most guidance to the user. Linear navigation is 
unidirectional (for example, “next” links only) or 
bidirectional (going backward is allowed). 

− Indexed navigation (fig.6) establishes transitions between a 
newly created interaction space, the index, and each target 
interaction space. Unidirectional indexed navigation 
provides only transitions from the index to the other 
interaction spaces; while bidirectional indexed navigation 
offers transitions in both directions. 

− Mixed navigation (fig.7) is a combination of linear and 
indexed navigation. 

− Fully-connected navigation (fig.8) links each pair of target 
interaction spaces. This type of navigation is the least 
restricting for the user. It is typically rendered as a tabbed 
panel. 

 
 

Fig.5 Unidirectional/bidirectional linear navigation 
 
 

 
Fig.6 Unidirectional/bidirectional indexed navigation 

 
 
 

Fig.7 Unidirectional/bidirectional mixed navigation 
 
 
 
 

Fig.8 Fully-connected navigation 
The splitting algorithm has been integrated in a plug-in for the 
GrafiXML environment. This plug-in implements a collection of 
transformation rules, to be applied to a source interface defined at 
the CUI level in order to produce specific interfaces targeted to 
more constrained platforms. Splitting rules are only one part of 
those rules that also include repositioning, interactor substitution, 
etc. The application of the splitting rule is under the control of the 
designer. He/she can parameterize the rule, apply it, preview the 
results, and compare alternatives. He/she is given guidance thanks 
to a knowledge base of rules linked with the tool. This knowledge 
base contains examples of the application of each rule as well as 
usability guidelines, collected in the literature and in a usability 
study specially dedicated to users’ perception of the application of 
those transformations. 

5. SPLITTING AT THE AUI LEVEL 
Until now, we have supposed that the designer has just produced a 
description of the Concrete User interface. Let’s now consider the 
scenario where a task model and an Abstract user interface have 
been produced. In that case, we can use the high level information 
from the task model to refine our algorithm. 

5.1 Theory and principles 
The CTT-based task model of UsiXML is a hierarchy of tasks, 
where each task can be decomposed into two or more subtasks. A 
task T can be declared as optional ([T]) or iterative (T*). Sibling 
tasks, appearing at the same level in the task hierarchy, are 
connected by temporal/logical operators: 
− Choice T1 [] T2: exclusive choice between T1 and T2  
− Order independency T1 |=| T2: T1 and T2 can be performed 

in any order 
− Independent concurrency T1 ||| T2 and Concurrency with 

information exchange T1 |[]| T2: T1 and T2 can be 
performed in any order. We shall call these operators 
“concurrent operators”. 

− Disabling T1 [> T2 and Suspend-resume T1 |> T2: T2 
disables/interrupts T1. 

− Enabling (T1 >> T2) and Enabling with information passing 
(T1 []>> T2): T1 and T2 are executed in sequence. We shall 
call those operators “sequential operators”. 

There is a priority ordering between the temporal operators, as 
shown on fig.9. 
 
 
 

Fig.9 Priority ordering between the temporal operators in the 
task model 

An easy way to cope with the priorities among the temporal 
operators is the priority tree technique used by Luyten & al. [14]. 
A priority tree is a view on a task model, with the same semantics 
as the original task model, but where all the temporal relations at 
the same level in the task hierarchy have the same priority 
according to their defined order.  
Our algorithm relies on a few principles, detailed hereafter. 

►Principle 1: An interaction space can be split at the level of a 
sequential operator. 

“Splitting at the level of operator Op” means that all the tasks 
(and their descendants) to the left of Op which belonged to the 
source interaction space will be assigned to target interaction 
space 1 (IStarget1) and that all the tasks (and their descendants) to 
the right of o which belonged to the source interaction space will 
be assigned to target interaction space 2 (IStarget2). 
Unlike generative approaches such as Paterno’s ETS algorithm 
[17], we do not consider that sequential tasks are automatically 
assigned to different interaction spaces. This decision is under the 
responsibility of the designer. Presenting sequential tasks in the 
same interaction space can make sense, especially when those 
sequential tasks decompose a higher level task which has to be 
accomplished iteratively, such as on fig.10. In this example, a 
simple information retrieval system, a designer could choose to 

Target1  

Target2  

Target 

highest 
 priority 

lowest  
priority [] |=| 

||| 
|[]| 

[> 
|> 

>> 
[]>>

Target1  Target2  Target1  Target2  

Target1  

Target2  

Index  Index  
Target1  

Target2  

Index  
Target1  

Target2  

Target1  

Target2  

Index  

62



place the two sequential cases, tasks “insert search criteria” and 
“view results” into the same interaction space, if the screen space 
is unconstraint (fig. 10b). If a new version of the user interface 
has to be conceived for a platform with less display capabilities, 
pagination could be operated at the level of the sequential 
operator, creating the two interaction spaces in fig.10c. 

 
(a) 

  
(b) (c) 

Fig.10 Task model for a simple information retrieval system, 
with different distribution of tasks among interaction spaces 

►Principle 2: When an interaction space includes several 
sequential tasks, split before the first optional task in the 
sequence. 

In the cases where the optional task is not actually carried on, the 
user will not even have to navigate to the second interaction 
space. For example, let’s consider the extension of the previous 
task model on fig.11. The “View results” task now consists of 
three subtasks: the first subtask displays the full list of result 
generated by the request to the information system; the second 
subtask is a selection task that puts the focus on one of the 
displayed results; and the last subtask is an optional task which 
displays a complete description of the selected item. Again, in a 
first, unconstrained version of the specification, the designer 
could choose to present all the tasks in the same interaction space, 
as on fig.11a. If we now try to determine the best place to operate 
pagination, we will notice that here, obviously, the best design 
solution is to split the source interaction space before the optional 
task “View items details”, generating the target interaction spaces 
shown on fig.11b. (By the way, splitting between two tasks linked 
with the same component of the AUI is not allowed: it would not 
make sense to split between “View list of items” and “Select 
items”.) 

 
(a) (b) 

Fig.11 Splitting an interaction space containing a sequence of 
tasks, one of them being an optional task 

►Principle 3: When it is not possible to split an interaction space 
at the level of a sequential operator, split at the level of a 
concurrent, order independency or choice operator (|||, |[]|, |=|, []) 

The temporal operators with a lower priority will be considered 
first. Splitting at the level of an interrupting or disabling task is 
not allowed. Of course, splitting at the level of one of the four 

operators above introduces constraints that were not present in the 
task model, and splitting at the level of a sequential operator 
should always be preferred when possible. Fig.12 shows the 
example of a (very) small task model which consists of the higher 
level task “Insert personal data” and its two concurrent subtasks 
“Insert identity” and “Insert address”. The initial interaction space 
contains both subtasks (fig.12a). Splitting separates those two 
subtasks (fig.12b). 

  
(a) (b) 

Fig.12 Splitting an interaction space at the level of a 
concurrent operator 

►Principle 4: When splitting rules can be applied at distinct 
levels in the task hierarchy, split at the highest level. 

The intuition behind this principle is that tasks at a lower level in 
the task tree will be more closely semantically linked than tasks at 
a higher level. For example, let’s consider the task model on 
fig.13, a more complete version of the previous example. On the 
first, less constrained platform, the designer could place all the 
tasks together (fig.13a). If less space is available, the best place to 
operate pagination, obviously, is to split the source interaction 
space at the highest level in the hierarchy, generating the target 
interaction spaces shown on fig.13b. This transformation 
preserves the integrity of the “Insert identity” and “Insert address” 
tasks: their subtasks, which were considered by the designer as 
tied enough to form concepts, are maintained together. 

 
(a) 

 
(b) 

Fig.13 Splitting an interaction space containing concurrent 
tasks at different level in the hierarchy 

►Principle 5: When splitting in the scope of an operator with a 
higher level of priority, a distribution of tasks amongst target 
interaction spaces has to be operated. 

Let’s consider the small extension to the previous example shown 
on fig.14. If we naively split at the level of the sequential operator 
as described above, we will obtain a first interaction space IS1 = 
(Insert name, Insert first name) and a second interaction space IS2 
= (Insert street, Insert number, Insert city, Insert country, Cancel). 

63



Such a transformation introduces a discrepancy between source 
and target platform since it is not possible anymore to access the 
disabling “Cancel” task when performing the “Insert identity” 
task on the target platform: the user has to realize entirely the 
“Insert identity task”, and then he or she can access the second 
interaction space where the “cancel” task is available. This kind 
of design is not ergonomic and can be frustrating for the user, 
especially when long tasks have to be achieved entirely without 
possibility of interruption. A better transformation rule should 
distribute the task to the right of the disable operator to each 
target interaction space, as illustrated on fig.14b, giving a solution 
with IS1 = (Insert name, Insert first name, Cancel) and IS2 = 
(Insert street, Insert number, Insert city, Insert country, Cancel). A 
more formal definition of the distribution principle will be given 
in section 5.2. 

 
(a) 

 
(b) 

Fig.14 An example of distribution of a disabling task 

5.2 Description of the algorithm 
Our algorithm requires at input a subset of tasks of the task 
model, viewed as a priority tree. This subset of tasks, or Source 
interaction space (hereafter: ISsource) contains the leaf tasks that 
are mapped to the components of an abstract container that the 
designer has decided to split.  
ISsource is a list (T1,…, Tn) where 
− T1,…, Tn are leaf tasks in  the task model. 
− (T1,…,Tn) is a subsequence of the list (Ti,…,Tj) formed by 

the leaves nodes in the task model, considered as an ordered 
tree. 

Until the interaction space is split and unless there are no more 
operators to go through: 
1. We try to split at the level of a sequential operator 

1.1. If there is an optional task in the sequence, we split before 
this task 
1.2. Else  
1.2.1. We look for the first suitable sequential operator where 
to split. “First” means “at the highest level in the task 
hierarchy” and “suitable” means that splitting at that place 
would generate non empty target interaction spaces, well 

balanced in terms of number of tasks. We search the task tree 
applying a breath-first strategy, starting from the task in the 
task model that is the lowest common ancestor of the tasks 
forming ISsource. 
1.2.2. If such a sequential operator is found, the source 
interaction space is then split into two temporary target 
interaction spaces IStarget1 and IStarget2. Let T1 and T2 be the 
two tasks in the task model linked by the operator where we 
have decided to split. IStarget1 will contain the first part of 
ISsource, delimited by T1 if T1 is a leaf task, its right-most 
descendant otherwise. IStarget2 will contain the remainder of 
ISsource. 
1.2.3. We then apply distribution rules. 

2. When it was not possible to operate sequential splitting, we 
then try to split at the level of another operator. 

2.1. We look for the first suitable operator where to split.  
2.2. If such an operator is found, the source interaction space is 
then split into two temporary target interaction spaces. 
2.3. We then apply distribution rules. 

Distribution rules are applied when splitting occurs between two 
tasks T1 and T2 that are in the scope of a temporal operator with 
higher priority (see fig.9). By construction, splitting always 
occurs between sister tasks in the priority tree. Let T1 and T2 be 
two sister tasks, linked by temporal operator Op1. T1 and T2 are 
in the scope of temporal operator Op2 iff an ancestor of T1 and 
T2 is linked by a temporal operator Op2 to a given task T3. If 
Op2 has a higher priority level than Op1 and T3 has descendants 
in ISsource, then distribution must be applied. Distribution 
consists in appending to the right of IStarget1 the descendants of 
T3 that belong to ISsource and appending to the left of IStarget2 
the descendants of T3 that belong to ISsource.  The algorithm 
begins by considering distribution at the level of the mother of T1 
and T2, and then the upper levels are successively considered, 
until reaching the level of the lowest common ancestor of all tasks 
in ISsource. 

5.3 Implementation 
This algorithm has been integrated to the IdealXML environment 
[16]. IdealXML is a development environment which permits to 
specify user interfaces in UsiXML at different abstraction levels. 
The developer specifies a task model, an AUI model, and 
mappings between those levels in IdealXML. As explained 
earlier, the AUI level is composed of containers and components. 
If the designer decides that a container contains too much 
components, he might choose to split this container into smaller 
units. The designer selects this abstract container. The tool 
retrieves the set of leaf tasks linked with the components inside 
the container. This set of leaf tasks is given as input to the 
algorithm described above. The algorithm gives as output two 
subsets of tasks to be integrated in two separate subsets of 
containers. The original container in the AUI is replaced by two 
new containers, each of them containing appropriate components. 
The mapping between leave tasks and components is kept 
constant, only the mapping between higher level tasks and 
containers is modified. 

64



6. Example 
To exemplify the pagination algorithm on a more complex user 
interface, we now consider an on-line hotel booking form (Figure 
15).  

 
Figure 15. The CUI of the hotel booking system in GrafiXML 
Let us assume that we want to transform this UI for display on a 
smaller screen, such as a PDA. The designer, with the help of the 
tool, can explore several alternatives, depending on the type of 
navigation required between the fragments generated, or the 
number of fragments desired at output. Figure 16a shows the 
result of applying the splitting rule with the “sequential 
navigation” parameter. Alternatively, the system could generate a 
tabbed dialog box with the same contents rearranged (Figure 16b) 

 

 
Figure 16. The CUI of the hotel booking system after applying 

the splitting rules 

In this scenario, the decision on where to split was based on the 
specification, by the designer, of splittable/unsplittable boxes. In 
another scenario, we could suppose that the designer has started 
the development of the hotel booking system by specifying a task 
model, in a tool such as IdealXML. For the moment, we do not 

have any implementations of a ‘split’ CUI starting from a ‘split’ 
AUI. However, the two UsiXML-compliant tools GrafiXML and 
IdealXML could collaborate in this way: 
1. An AUI, a task model and mappings are built and edited with 

IdealXML. 
2. A CUI is edited with GrafiXML. The designer does not want 

to specify by hand which boxes are splittable and which 
unsplittable. 

3. Consider a given group, box x. We want to determine whether 
box x is splittable or not. The process is as follows:  
3.1. retrieve abstract container y at the AUI level which is 
mapped to box x; 
3.2. retrieve leaf tasks T1,…,Tn in the task model which are 
executed in container y; 
3.3. apply the splitting algorithm; 
3.4. if the result is non-empty, box x is marked as splittable; 
otherwise, it is marked as unsplittable. 

4. Apply the splitting rule at the CUI level. 
Phases 3.1 and 3.4 have still to be done manually since they are 
supported by two different software packages. When the splitting 
process is finished the designer is still free to apply 
transformation rules that belong to levels exhibiting a lower level 
of granularity (Section 1). 

7. CONCLUSION AND FUTURE WORK 
We have described a pagination technique, which relies on a high 
level description of the UI in the user interface description 
language UsiXML. When applied at the Concrete level, the 
algorithm proposed is quite classical. Nevertheless, it goes further 
than state-of-the art approaches from several points of views. It is 
generic: once splitting applied at the CUI level, final user 
interfaces can be generated in Java or HTML for example, so that 
we do not have to write separate programs to paginate Java or 
HTML user interfaces. It relies on pre-existing structures of 
UsiXML. It can be applied automatically, using default 
parameters, but it can also be fully controlled by the developer, 
which can choose the number of pages at output, the type of 
dialog generated and the content of the pages. It proposes a large 
range of dialog styles, when other approaches often only generate 
sequential navigation.  
However, the originality of the technique proposed is to involve 
UI description at several abstraction levels As far as we know, 
there have been no similar tentative to use information from the 
AUI and task levels in order to improve the splitting process. This 
multilevel approach is quite new and exciting. Existing model-
based tools which generate several versions of a user interface for 
multiple platforms adopt a totally different approach: either they 
generate code starting directly from a description at the tasks and 
concepts level [20][18], which offers little or no control on the 
layout and structure of the final interface, either they require to 
specify a distinct CUI for each target platform or each family of 
target platforms [1], which has the double disadvantage to 
demand more work to the designer and to offer no guarantee of 
consistency between the distinct versions of the final interface. In 
contrast, our approach requires only one specification, that can be 
given with all the level of detail required (choice of widgets, 
layout,…) while taking advantage of information specified at 
higher abstraction levels if this information is available. 
The main limitation of our approach is that it is meant to be 
applied as design time, as a part of a single authoring process 

(a) 

(b) 

65



(graceful degradation). Investigation of the utility of our 
algorithms at run-time, on pre-existing user interfaces, remains to 
be done. For example, a possible future work would be to 
consider the pagination at run-time of Web pages with an 
embarked task model, and to compare the results with existing 
approaches such as [6]. 

8. ACKNOWLEDGMENTS 
We gratefully thank the Salamandre Project, funded by the 
“Initiatives III” research program of the Ministry of Walloon 
Region, DGTRE, Belgium and the SIMILAR network of 
excellence, supported by the IST 6th framework program of the 
European Commission (project # FP6-507609).  

9. REFERENCES 
[1] Ali M.F., Pérez-Quiñones M.A. and Abrams M. Building 

Multi-Platform User Interfaces With UIML. In: A. Seffah & 
H. Javahery (eds.) Multiple User Interfaces: Engineering 
and Application Framework. John Wiley and Sons, 
Chichester, UK, 2004. 

[2] Artail, H.A., and Raydan, M. Device-aware desktop web 
page transformation for rendering on handhelds. Personal 
and Ubiquitous Computing, 9(6) (2005), 368-380. 

[3] Banavar, G., Bergman, L.D., Gaeremynck, Y., Soroker, D., 
and Sussman, J. Tooling and system support for authoring 
multi-device applications. Journal of Systems and Software 
69(3) (2004), 227-242. 

[4] Bouillon, L.; Vanderdonckt, J. & Chow, K.C. Flexible re-
engineering of web sites. In Proceedings of the 2004 
International Conference on Intelligent User Interfaces 
IUI’04 (Funchal, Madeira Island, Port., January 13-16, 2004)  

[5] Calvary G., Coutaz J., and Thevenin D.  A unifying 
reference framework for the development of plastic user 
interfaces. In Proceedings of IFIP WG 2.7 Conference on 
Engineering the User Interface EHCI'2001 (Toronto, May 
11-13, 2001), Chapman & Hall, London, 2001.  

[6] Chen, Y., Xie, X., Ma, W.-Y., and Zhang, H.-J. Adapting 
Web Pages for Small-Screen Devices. IEEE Internet 
Computing, 09(1) (2005), 50-56. 

[7] Chu, H., Song, H., Wong, C., Kurakake, S., and Katagiri, M. 
Roam, a seamless application framework. Journal of System 
and Software 69(3) (2004), 209-226.  

[8] Ding, Y., and Litz, H. Creating Multiplatform User 
Interfaces by Annotation and Adaptation. In Proceedings of 
the 10th International Conference on Intelligent User 
Interfaces IUI’2006 (Sydney, January 29 - February 1, 
2006).  

[9] Florins, M., and Vanderdonckt, J. Graceful degradation of 
user interfaces as a design method for multiplatform systems. 
In Proceedings of the 2004 International Conference on 
Intelligent User Interfaces IUI’04 (Funchal, Madeira Island, 
Port., January 13-16, 2004). 

[10] Giller, V., Melcher, R., Schrammel, J., Sefelin, R., and 
Tscheligi, M. Usability Evaluations for Multi-device 
Application Development - Three Example Studies. In 
Proceedings of Mobile HCI’03 (Udine, Italy, Sept. 8-11, 
2003). 

[11] Göbel, S., Buchholz, S., Ziegert, T., and Schill, A.  Device 
Independent Representation of Web-based Dialogs and 
Contents. In Proceedings of the IEEE YUFORIC ´01 
(Valencia, Spain, Nov. 2001).  

[12] Henry, C. & Henry, K. Recherche sur les préférences des 
utilisateurs en ce qui concerne la dégradation des interfaces 
en vue d’être visionnées sur des plates-formes à petit écran. 
Master's thesis, IAG, Université catholique de Louvain, 
Louvain-la-Neuve, 2004.  

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., 
Florins, M. & Trevisan, D. USIXML: A User Interface 
Description Language for Context-Sensitive User Interfaces. 
In Proceedings of the first international Workshop on 
Developing User Interfaces with XML: Advances on User 
Interface Description Languages (Gallipoli, Italy, 25 May 
2004).  

[14] Luyten, K., Clerckx, T., Coninx, K. & Vanderdonckt, J. 
Derivation of a Dialog Model from a Task Model by 
Activity Chain Extraction. In Proceedings of DSV-IS 2003- 
10th International Workshop on Design, Specification, and 
Verification of Interactive Systems (Funchal, Madeira Island, 
Portugal, June 11-13, 2003).  

[15] Mandyam, S., Vedati, K., Kuo, C. and Wang, W., User 
Interface Adaptations: Indispensible for Single Authoring. In 
Workshop on Device Independent Authoring Techniques (St. 
Leon-Rot, 15-26 September 2002).  

[16] Montero, F., López-Jaquero V., Vanderdonckt J., Gonzalez 
P., Lozano, M. D. and Limbourg, Q. Solving the Mapping 
Problem in User Interface Design by Seamless Integration in 
IdealXML In Proceedings of DSVIS'05 - 12th International 
Workshop on Design, Specification and Verification of 
Interactive Systems (Newcastle upon Tyne, UK, July 13–15, 
2005)  

[17] Paternò F.  Model-Based Design and Evaluation of 
Interactive Applications. Springer-Verlag, London, UK, 
1999. 

[18] Paternò, F., Mori, G. and Santoro, C. Tool Support for 
Designing Nomadic Applications. In Proceedings of 7th Int. 
Conf. on Intelligent User Interfaces IUI’03 (January 12-15, 
2003, Miami), ACM Press, New York. 

[19] Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., 
and Dermler, G. Flexible pagination and layouting for device 
independent authoring. In WWW2003 Emerging Applications 
for Wireless and Mobile access Workshop (not printed).  

[20] Thevenin D. Adaptation in Human Computer Interaction: 
the case of Plasticity. Ph. D. Thesis, Joseph Fourier 
University, Grenoble, 2001. 

[21] Watters, C., and Zhang, R. PDA Access to Internet Content: 
Focus on Forms. In Proceedings of HICSS'03, the 36th 
Annual Hawaii International Conference on System Sciences 
(Big Island, Hawaii, January 2003).  

[22] Ye, J., and Herbert, J. User Interface Tailoring for Mobile 
Computing Devices. In Proceedings of UI4All, 8th ERCIM 
Workshop « User Interfaces for All » (Vienna, Austria, 28-29 
June 2004).  

 

66




