
Showing User Interface Adaptivity by Animated Transitions
Charles-Eric Dessart, Vivian Genaro Motti, and Jean Vanderdonckt

Université catholique de Louvain, Louvain School of Management
Louvain Interaction Laboratory, Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

{vivian.genaromotti, jean.vanderdonckt}@uclouvain.be – Phone: +32 10 478525

ABSTRACT
In order to reduce the inevitable end user disruption and cog-
nitive perturbation induced by adapting a graphical user in-
terface, the results of the adaptation could be conveyed to the
end user by animating a transition scenario showing the evo-
lution from the user interface before adaptation to the user in-
terface after adaptation. A transition scenario consists of a
sequence of adaptation operations (e.g., set/change a property
of a widget, replace a widget by another, resize a widget) be-
longing to a catalogue of operations defined as an Extended
Backus-Naur Form grammar. Each transition operation has a
range from a single widget (e.g., this “Ok” button) to a selec-
tion of widgets based on a selector mechanism (e.g., all vali-
dation widgets of this family of interfaces). A transition sce-
nario is built either automatically by any adaptation algo-
rithm or interactively by a specific editor for designers. An
animator then executes the animation scenario by parsing
each adaptation operation one by one or in a grouped mode
and by rendering them by an animated transition on a user in-
terface model. The type (e.g., wipe, box in, box out) and pa-
rameters (e.g., animation speed, pace, direction) of each ani-
mated transition have been selected based on usability guide-
lines for animation. A user study suggests that a transition
scenario reinforces understandability and trust, while still
suffering from lag.

Author Keywords
Adaptation, adaptivity, animation, transition operation, selec-
tion mechanism, transition operation, visual transition.

General Terms
Design, Experimentation, Human Factors, Verification.

ACM Classification Keywords
D2.2 [Software Engineering]: Design Tools and Techniques
– Modules and interfaces; user interfaces. D2.m [Software
Engineering]: Miscellaneous – Rapid Prototyping; reusable
software. H.5.1 [Information interfaces and presentation]:
Multimedia Information Systems – Animations. H5.2 [In-
formation interfaces and presentation]: User Interfaces –
User-centered design.

INTRODUCTION
User Interface (UI) adaptation typically consists in modifying
parts or whole of a particular interface in order to address

specific needs required by an end user or a category of end
users. Adaptation falls into two categories depending on who
is in control of the adaptation process [7,11,24]: adaptability
refers to as the ability of the end user to adapt the UI, adap-
tivity refers to as the ability of the system to adapt the UI.
Mixed-initiative adaptation exists when both the end user and
the system cooperate towards the UI adaptation goal. Adap-
tivity, although expensive to develop, has demonstrated sev-
eral benefits [27] and is largely used in a wide range of do-
mains of human activity, such as ambient intelligence [13],
automotive [30], electronic commerce [33], algorithmic [26],
and information systems [11].

Some of the main shortcomings of adaptivity are [8,27]: end
user disruption caused by a behavior that is unexpected by
the end user and cognitive perturbation when the end user,
confronted to a new UI, must reconcile with this UI by imag-
ining the correspondence between the UI before and after ad-
aptation. Between the UI before adaptation and the UI after
adaptation, there is nothing than a big whole, thus reinforcing
the cognitive perturbation. Cognitive psychology [19] refers
to this phenomenon as “cognitive destabilization”, meaning
that any user is mentally destabilized when confronted with
anything unexpected, unprecedented, or unpredicted con-
tents. The end user remains in this stage of cognitive destabi-
lization until a “re-stabilization” restores a relation between
the past and the newly presented contents. The end user does
not suffer from these shortcomings in adaptability since the
end user remains in control (therefore knowing what she is
doing), as opposed to the system is in control in adaptivity
(therefore the end user does not know what the system is do-
ing). In order to address this challenge, animated transitions
are applied to showing how the adaptivity process has been
conducted in order to explain to the end user what has been
adapted, and perhaps why.

The remainder of this paper is structured as follows: the next
section reports on some related work. Then, the full process
of adaptation by animated transitions is introduced, moti-
vated, and defined. The software architecture supporting the
implementation of animating transition is explained, and ex-
emplified. A user study is then conducted in order to deter-
mine what the impact of animated transition over the end
user is. Finally, a conclusion delivers the main points of this
research and presents some future avenues.

RELATED WORK
Animated transitions and support for adaptivity are two main
fields of research that are related to this work since its origi-
nality lies in considering the former for the latter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

95

Animated transitions
Animation [1, 35] has been widely used as a general tech-
nique for supporting end users in understanding different
types of contents: evolution of a dynamic process (e.g., a me-
chanical process) [34, rule 2.4*18], a chronological sequence
of events over time (e.g. a country demography) [12] or
complex graphics (e.g., earth rotation) [39] and statistics [20].
It has also been used to represent various types of relations
between elements [34, rule 2.4*19], such as sequences, im-
portant [35] or spatial connections [3], causal relations [41],
for organizing diagrams [5], and for searching in 3D tree-
maps where task times and user performance were improved
[4]. Small animated icons could convey functionality better
than static icons of the same size [1].

Animated transitions [2,4,20] in interactive systems are
aimed at conveying to the end user a transition between
states, views or scenes, e.g., to foster a smooth transition be-
tween two scenes, menus [22] or images [23]. Animated
transitions improve feedback on users’ actions [31], to notify
display changes [29], and to improve situation awareness in a
distributed environment. Sliding and blinking animated tran-
sitions were used to convey a context change on a menu [22]
or images [23] on a mobile device with a positive impact on
perception and conception of change.

Cartoons-inspired visual effects [10,28,38] have also been
added to achieve a more realistic, if not lifelike, visual effect
in the transition. Animated help better explains a GUI usage
to the end user [36].

In order to be effective and usable, animated transitions need
to be carefully designed as they are subject to a series of in-
trinsic shortcomings: they may require more cognitive work-
load than static images [41], animation is always the first dis-
play element attracting the end user’s attention [21] whatever
the animation goal is, they may cause user distraction [41],
their duration always induce some lag [35], the animated ob-
jects should not exceed a certain threshold [9]. To minimize
lag, an animated transition should be fast, but not too fast,
otherwise the end user may completely overlook the ani-
mated transition. Typical duration may range from 300 msecs
to several secs, depending on the complexity of the transition
and other user- and situation-specific factors such as familiar-
ity, expectation, attentiveness, and perceptual abilities that
are difficult to predict [2].

Animated transitions may induce a significantly positive im-
pact on understanding display changes, whether it is for noti-
fying value changes in controls of a GUI [2], for updated
contents in a web page [37], such as web navigation [14] or
for evolving data in a dynamic display [12]. Different tech-
niques support end users in perceiving and understanding
screen changes, mainly based on animation between states
[22,23], perhaps supplemented by sound [32].

Mnemonic rendering [6] consists of an image-based tech-
nique that buffers all changes of a fast-changing dynamic
display and restitutes these changes under the end user’s con-
trol via a memory jog. DiffIE consists of highlighting web
page contents that have been updated since last visit [37]. A

positive value has been demonstrated on how people interact
with the web page and understand their contents. For in-
stance, some users confessed they initially perceived some
contents as static although they were dynamic. Phosphor
widgets rely on afterglow effect in order to leave some visual
reminiscence of changes of values of widgets (e.g., the value
change of a slider, the check/uncheck of a check box, a new
selection in a radio box). Rhetorical Structure Theory (RST)
is exploited to apply Flash multimedia animated transitions
on web pages to explain how web navigation has been trans-
formed [14]. Differentiated transitions [31,32] are animated
transitions that support explaining a process over time in a
way that is reflected in the visual effect. For instance, the
transfer time, the network bandwidth, and the file size are
explicitly represented in an animated transition depicting a
file transfer. RST, respectively Mnemonic rendering, force
end users to wait for, respectively to replay, the display
changes, thus inducing some lag [35]. DiffIE does not induce
such a drawback (since the highlighting is almost instantane-
ous), nor Phosphor widgets (since the afterglow effect does
not stop user in their tasks). Differentiated transitions actually
animate the task while being executed [31], thus not repre-
senting any hindrance for achieving the end user’s task. The
aforementioned techniques certainly contribute to improving
the perception of display changes over time, but they do not
address the perception of UI adaptation over time, even if UI
adaptation could be considered as a certain type of screen
change. More importantly, they are not capable of recording
the adaptation process to replay or explain it afterwards. RST
[14] is the only one applying animated transitions on an ab-
stract UI description of a web page. In our work, the ani-
mated transitions are applied on a general-purpose GUI
model, but could be equally interpreted with any similar User
Interface Description Language (UIDL).
Support for adaptivity of user interfaces

Adaptivity has been subject to many pieces of work that lead
to a recognition of a series of benefits vs. costs [7,11,17]. In
particular, adaptive UIs are able to optimize task completion
time and rate [27], to induce a positive impact on accuracy
[18], human performance [15,25], predictability [18], situa-
tion awareness [15,25] and workload [25]. Adaptivity has
also been revealed effective when the UI should be adapted
to the constraints imposed by any loss of screen resolution
[15], like on mobile devices [16].

In this work, animated transitions show to the end user how
an adaptivity process has led to an adapted GUI. It is ex-
pected that all benefits of animated transitions will establish a
feeling of continuity between the UI before and after adapta-
tion, thus impacting the end user’s disruption and the cogni-
tive perturbation discussed in the introduction. To our
knowledge, this combination remains unexplored.

WHICH TRANSITION FOR WHICH ADAPTATION?
In order to address the problem of determining which ani-
mated transitions are considered adequate to mimic an adap-
tation operation, this section first provides a catalogue of
such adaptation operations to be supported by the animator. It

96

then reviews usability guidelines and cognitive psychology
principles for animation for establishing a mapping between
adaptation operations and animated transitions.

A Catalogue of Adaptation Operations
Adaptation operation is hereby defined as any transformation
performed on any UI element in order to adapt the UI for the
ultimate benefit of an end user interacting in a certain context
of use. Such adaptation operations may involve a series of
actions that are intended to obtain a certain global effect on
the initial UI before adaptation until the final UI after adapta-
tion is obtained (Fig. 1). Each adaptation operation produces
a transient UI being adapted (Fig. 1), which consists in an in-
termediary UI stage during adaptation. Usually, the end user
does not perceive any of these transient UIs, being presented
only with the initial and the final UIs, which cause the end
user disruption and the cognitive perturbation. The whole se-
quence of adaptation operations conducted for the UI adapta-
tion is called the adaptation scenario, that could involve a
wide spectrum of adaptation operations which fall into five
categories [15,16,17]:

1. Resizing operations: are aimed at changing a widget size
in order to optimize screen real estate, aesthetics, and vis-
ual design [40]. For instance, an edit field could be
enlarged/shortened in height and/or length to take less
space and to be subject to various alignments.

2. Relocating operations: are aimed at changing a widget
location in order to reduce the screen space consumption.
For instance, “Ok”, “Cancel”, and “Help” push buttons
could be relocated to the bottom of a dialog box.

3. Widget transformations: are aimed at replacing one or a
group of widgets by another widget or another group of
widgets ensuring the same task, perhaps with some deg-
radation [16]. For instance, an accumulator that consists
of list boxes with possible values and chosen values could
be replaced by a multi-selection list, which could be in
turn replaced by a multi-selection drop-down list.

4. Image transformations: are aimed at changing the size,
surface, and quality of an image in order to accommodate
the constraints imposed by the new context of use,
namely the display/platforms constraints.

5. Splitting rules: are aimed at dividing one or a group of
widgets into one or several other groups of widgets that
will be displayed separately. For instance, a dialog box is
split into two tabs in a tabbed dialog box.

A single adaptation operation could be performed on a single
UI element in isolation (e.g., resizing an individual or a com-
pound widget) or several related UI elements concurrently
(e.g., resizing a group of aligned edit fields). Therefore, we
will define an Adaptation Operation Language (AOL) for
expressing one adaptation operation on one element at a time
first and then, this will be generalized to several UI elements
together.

Figure 1. Timeline of the animation process.

Adaptation Operation Language. We now provide a cata-
logue of adaptation operations belonging addresses the five
aforementioned categories. For this purpose, each adaptation
operation is defined in an Extended Backus-Naur Form
(EBNF) format to form a grammar. In this notation, brackets
indicate an optional section, while parentheses denote a sim-
ple choice in a set of possible values.

SET <Element.property> TO {value, percentage}: as-
signs a value to a widget property or a percentage of the ac-
tual value. For instance, SET “pushButton_1.height” TO
10 will resize the push button to a height of 10 units while
SET “pushButton_1.height” TO +10 increases its height
by 10%.

DISPLAY <Element> [AT x,y]: displays a UI element
whose identifier is provided at a x,y location where x and and
y are integer positions (e.g., in characters or pixels). For in-
stance, DISPLAY “pushButton_1” AT 1,1 will display an
identified push button at coordinates 1,1 on a designated dis-
play. UNDISPLAY <Element> [AT x,y] is the inverse op-
eration. DISPLAY <Message> [AT x,y] displays a pro-
vided message.

MOVE <Element> TO x,y [IN n steps]: moves a UI ele-
ment to a new location indicated by its coordinates x and y,
possibly in a fixed amount of steps.

REPLACE <Element1> BY <Element2>: replaces a wid-
get Element1 by another one Element2. Sometimes the re-
placement widget could be determined after an adaptation al-
gorithm, thus giving the following definition: REPLACE
<Element1> BY <AdaptationAlgo:>. This mechanism is
similar for image transformations: images are usually trans-
formed by local or remote algorithms (e.g., for resizing, con-
verting, cropping, clipping, repurposing), thus giving the fol-
lowing definition: TRANSFORM <Image1> BY <Imag-
eAlgo:URL>.

DISTRIBUTE <Elements> INTO <Containers> [BY
<DistribAlgo:URL>: computes a distribution of a series of
UI Elments into a series of UI Containers, possibly by calling
an external algorithm, local or remote.

Selection mechanism. In the above definitions of adaptation
operations, only one UI element is provided as parameter at a
time. Obviously, an adaptation operation could have a scope
of several UI elements together. For this purpose, a selection
mechanism is introduced that defines a scope of UI Elements
that could serve as a parameter. A Selector consists of a defi-

97

nition of the UI Element types to which the adaptation opera-
tion applies, and a series of property declarations that define
the operations. Four major types of selector scope are consid-
ered that replace <Element> or <Elements> fields in the
previous definitions:

1. universalSelector: applies the adaptation operation to all
UI elements belonging to the current GUI of concern. For
instance, SET “universalSelector.backgroundColor”
TO “Ivory” will change the background color of the entire
GUI into ivory.

2. elementTypeSelector: applies the adaptation operation
to all elements belonging to the selector’s type (e.g., all
containers, all list boxes). For instance, SET “element-
TypeSelection.foregroundColor=pushButton” TO
“lightGrey” will set the foreground color of all push but-
tons of the current UI to light grey.

3. classSelector: applies the adaptation operation to all
elements belonging to the selector’s type whose defini-
tion makes them part of the class (e.g., all containers hav-
ing an ID greater or equal to “CC2”, all list boxes having
more than 10 items).

4. idSelector: applies the template to only one element be-
longing to the GUI of concern: the one whose id attribute
matches the string contained in the parameter. The idSe-
lector is used by default and should not be necessarily
specified.

Animated transitions for an adaptation operation
On the one hand, usability guidelines [1,9,10,15,21,28,35,
40,41] exist that recommend an animated transition for a
particular usage that has been proved effective and/or effi-
cient to some extent. On the other hand, cognitive psychol-
ogy provided a series of high-level principles that could be
converted into design guidelines. For instance, the visual
animation dynamicity should be appropriate to the animated
transition: “wipe from left” is considered less disruptive
when explaining a process that is demonstrated from left to
write, other animations like “appear”, “fall from top” are
considered too disruptive and/or too visually impactful. “Ve-
netian blinds” should be used when the process evolves to a
significantly different stage, which is not appropriate for a lo-
cal change. In order to decide which animated transition is
appropriate for which adaptation operation, some major ani-
mated transitions are defined in Table 1 and classified into
five families in Table 2 that will then be used in establishing
mappings summarized in Table 3. Presentation software
[20,26] and animation [1,10,21, 35] have introduce a large
amount of varied animated transitions. Therefore, animations
selected in Table 1 have been chosen according to the follow-
ing criteria: they are the most frequently used techniques that
are described in a consistent way throughout the literature,
they are easy to implement, they convey a message that is
simple enough to be understood while being flexible enough
to allow some variation. In order to group these selected
animated transitions, we clustered them into five families
based on visual properties [41] (e.g., visual differentiation,
clarity, density) based on the literature [28,35,40] (Table 2):

Icon Name: definition

Horizontal scroll from right: to display the next
element from a sequence of UI elements

Horizontal scroll from left: to display the previous
element from a sequence of UI elements

Vertical scroll from bottom: to proceed with a
step-by-step reasoning, a continuous subject or a
long passing over, or a movement

Vertical scroll from top: to move back in a step-
by-step reasoning, a continuous subject or a long
passing over, or a movement

Diagonal replacement from top/bottom left cor-
ner: to go back to the previous page or
Screen or UI element

Diagonal replacement from top/bottom right cor-
ner: to move to next page or screen or UI element

Venetian blinds: to present a completely different
topic, to provide a feeling of coordinated time, to
convey a significant transition

Bam door close: to close a transient screen (e.g.,
an information screen, the About… splash
screen), to close a current scene, to signify game
over

Bam door open: to open a transient screen, to ini-
tiate a new step, to open a new window or UI
element, to launch a game, a simulation

Iris open: to show more detailed information
about a particular topic

Iris close: to show more general information
about a particular topic

Table 1. Definitions of some major animated transitions.

F1 Scroll, Diagonal replacement, Wipe
F2 Checkers, lines, columns, blinds, bam door open/close
F3 Cover, uncover
F4 Open, close, Box in, Box out, Iris open/close
F5 Cutting, Black transition

Table 2. Five families of animated transitions.

1. F1 family gathers animated transitions that simply re-
cover the old element by a new element (i.e, in our con-
text any UI element, but in general, it could be any
graphical object of a display or an entire display such as a
graphic, a presentation slide, or an overhead). The main
variation lies in the way the new element is presented
with respect to the old one, which is usually the direction
or the shape of the animated transition.

2. F2 family gathers animated transitions that divide the old
element into regions that are further subject to partial
overlapping when transitioning to the new element.

3. F3 family gathers animated transitions that present the
new element on top of the old element by moving it in
some way. The new element is therefore perceived as it
“flies” over the old element.

98

4. F4 family gathers animated transitions of type double
“blinds” or “windows”. The new element is divided into
two regions and progressively appears on top of the old
element because the blinds have been opened or closed.

5. F5 family gathers specific animated transitions that do not
induce any movement or overlapping of the new element,
but that simply makes the old element disappearing for
the new element by a sharp visual effect.

Table 3 motivates the selection of animated transition for
each adaptation operation that was previously defined. Ani-
mated transitions from F5 should be reserved for highly-
changing regions of the display. Per se, there is no direct ad-
aptation operation that is directly appropriate to this kind of
transition, except the complete display/replacement of a sig-
nificant region. For the moment, this animated transition was
not incorporated in the Animator for this reason, but this may
change depending on users’ feedback. We hereby define a
transition scenario as a sequence of adaptation operations
rendered by animated transitions based on Table 3.

USER CONTROL ACTIONS
The critical success factor for an animation beyond its appro-
priateness (as discussed in the previous section) resides in the
user’s capability to govern the pace and duration of the ani-
mation. This is also applicable to our animated transitions in
the transition scenario. In order to provide some user control
over the whole animation process, thus keeping control over

the total transition time of the animation scenario (Fig. 1), the
user may want to operate some actions either in the forward
animation (e.g., to understand the evolution of the adaptation
process) or in the backward animation (e.g., to come back to
a previously applied animated transition). These actions are
made available in the Animator through keyboard shortcuts
as follows:

 Skip (Pg Dn): terminates the current animated transition

and skips to the next one in the transition scenario. This
user action is motivated by the end user need to stop an
animated transition as soon as it is understood by users.

 Break (End): terminates the current transition scenario.
This is probably the most important user action since the
end user should be able to terminate the animation at any
time, as recommended by Smith & Mosier [34].

 Return (Pg Up): escapes from the current animated transi-
tion and returns to the previous one in the transition sce-
nario. This user action is motivated by the end user need
to come back to a previously animated stage when there
is a disruption in the understanding.

 Restart (Home): starts again the current transition sce-
nario from the first animated transition. This user action
is motivated by the end user need to replay entirely the
transition scenario in case of misunderstanding.

Adaptation
operation

Animation family, animated transition
with justification

SET that modifies
the length of a UI
element into a larger
value (absolute or
relative)

Horizontal scroll/wipe from left (F1):
this operation minimizes the visual
change since only the right part resulting
from the enlarging is changing. For edit
fields, for instance, this is particularly
appropriate because it gives the feeling
that the field is really expanding

SET that modifies
the height of a UI
element into a larger
value (absolute or
relative)

Vertical scroll/wipe from bottom (F1):
this operation minimizes the visual
change since only the right part resulting
from the enlarging is changing

DISPLAY that dis-
plays a new UI ele-
ment at a certain po-
sition

Uncover (F3), Box out (F4), or Iris open
(F4): these operations all induce a pro-
gressive display of a new UI element at
once, thus creating the illusion that it is
coming from the empty.

UNDISPLAY that
undisplays a new UI
element at a certain
position

Cover (F3), Box in (F4), or Iris close
(F4): these operations all induce a pro-
gressive disappearing of a existing UI
element at once, thus creating the illu-
sion that it is shrunk to an empty/white
region.

REPLACE that sub-
stitutes a UI element
by another one

Bam door open (F2): this operation af-
fects the entire visual aspect of the pre-
vious one and the new one.

DISTRIBUTE that
computes a distribu-
tion of a series of UI
Elments into a series
of UI Containers

Bam door open (F2) or Iris open (F4):
these operations enable the visualization
of an entire group at once, instead of
showing every little display change indi-
vidually

MOVE that moves a
UI element to a new
location indicated by
its coordinates x and
y, possibly in a fixed
amount of steps

Ideally, the UI movement could be rep-
resented by an animation depicting the
movement itself. But practically, this
would induce a very long animation,
thus increasing again the lag. Therefore,
we preferred to adopt a disappearing of
the UI element from its original location
and an appearing to its target location.
Depending on these locations, vertical,
horizontal or diagonal replacements (F1)
are selected. For instance, when a UI
element disappears from a top left loca-
tion to a bottom right location, a diago-
nal replacement from top/bottom left
corner is selected, thus creating the illu-
sion that the element moves from one
location to another. Consistently with
this direction, when a UI should only
move linearly (either vertically or hori-
zontally), a vertical/horizontal scroll is
selected instead.

Table 3. Mapping table between adaptation operation and animated transition.

99

Graphical
UI Editor

a

UI Model

Adaptation
Editor

c

b

Transition
scenario

Adapted
UI model

d e

Animator
f

g

h i j k l m

<xml version="1.0" encoding="UTF-8" ?>
<uiModel xmlns="http://www.usixml.org"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= "http://www.usixml.org/ http://www.usixml.org/spec/UsiXML-ui_model.xsd"
id="Test" name="Address book"
creationDate= "2010-11-05T11:37:56.709+02:00" schemaVersion="1.6.3" xsi:type="uiModel"

<head>
<version modifDate="2010-11-11T11:37:56.709+02:00">1</version>
<authorName>Jean</authorName>
<comment>Generated by GrafiXML 1.1.99 build id : 200513121449</comment>

</head>
<cuiModel id="Test-cui_1" name="Test-cui">

<window id="window_component_0" name="window_0" width="400" height="350">
<box id="box_1" name="box_1" type="vertical">
<outputText id="output_text_component_1" width="300" …>
<listBox id="listBox_component_1" width="250" …>
<box id="box_2" name="box_2" type="horizontal">

<pushButton id="push_button_component_1" label="Ok"…>
<pushButton id="push_button_component_2" label="Cancel"…>

</box>
</box>
</window>

</cuiModel>
</uiModel

<xml version="1.0" encoding="UTF-8" ?>
<uiModel xmlns="http://www.usixml.org"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= "http://www.usixml.org/ http://www.usixml.org/spec/UsiXML-ui_model.xsd"
id="Test" name="Address book"
creationDate= "2010-11-05T11:37:56.709+02:00" schemaVersion="1.6.3" xsi:type="uiModel"

<head>
<version modifDate="2010-11-12T15:57:32.709+02:00">2</version>
<authorName>Jean</authorName>
<comment>Generated by Graceful degradation build 1.1</comment>

</head>
<cuiModel id="Test-cui_1" name="Test-cui">

<window id="window_component_0" name="window_0" width="400" height="200">
<box id="box_1" name="box_1" type="vertical">
<outputText id="output_text_component_1" width="300" …>
<dropDownList id="dropDownList_component_1" width="300" …>
<box id="box_2" name="box_2" type="horizontal">

<pushButton id="push_button_component_1" label="Ok"…>
<pushButton id="push_button_component_2" label="Cancel"…>

</box>
</box>
</window>

</cuiModel>
</uiModel>

<xml version="1.0" encoding="UTF-8" ?>
<transitionModel xmlns="http://www.usixml.org"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= "http://www.usixml.org/ http://www.usixml.org/spec/UsiXML-ui_model.xsd"
id="Test" name="Address book"
creationDate= "2010-11-05T11:37:56.709+02:00" schemaVersion="1.6.3" xsi:type="uiModel"

<transitionScenario id="Transition_1" name="Transition Address Book">
<adaptationOper id="Operation_1" cmd="Replace output_text_component_1 By dropDownList_component_1">
<adaptationOper id="Operation_2" cmd="Resize dropDownList_component_1.width TO 300">
<adaptationOper id="Operation_3" cmd="Move push_button_component_1, push_button_component_2 TO 150">
<adaptationOper id="Operation_4" cmd="Resize window_component_0.height TO 150">

</transitionScenario>
</transitionModel>

d

e

b

Figure 2. Process of adaptation rendered by a transition scenario.

100

 User-Break during n msecs or n secs, until m next transi-
tion/end (Space with repetition): stops momentarily the
animated transition. This user action is motivated by the
end user need to pause or stop as long as the space bar is
pressed, depressed so as to allow time enough to under-
stand the adaptation operation being animated.

 Acceleration (CTRL+A): increases the speed of the ani-
mation scenario. This user action is motivated by the end
user need to speed up the animation pace when there is no
problem of understanding when the understanding of the
animated transitions is fine-grained or obvious.

 Deceleration (CTRL+D): decreases the speed of the ani-
mation scenario. This user action is motivated by the end
user need to slow down the animation pace when there is
a need to allow more time for understanding of the ani-
mated transition.

PRODUCING A TRANSITION SCENARIO
After having defined adaptation operations and animated
transitions that are adequate for conveying the message of a
particular adaptation operation, the process of adaptation
rendered by a transition scenario (Fig. 2) is now explained,
along with the implementation of software that supports it.

Step1: Producing a User Interface Model.
Fig. 2a reproduces a screen shot of a Graphical UI Editor
with which the designer can edit the initial UI before adapta-
tion. As in any UI builder, the designer drags widgets from a
palette and drops them onto a working surface area where
they can be assembled, grouped, and aligned. The GrafiXML
was developed that exports the results of the design phase
into a Concrete User Interface (CUI) model (Fig. 2b) that is
stored in UsiXML, a XML-compliant UIDL that is partially
reproduced in Fig. 2b. A CUI model basically consists here
of a recursive hierarchy of containers and widgets that are
expressed independently of any programming or makup lan-
guage. The editor today consists of about 20,000 LOC im-
plemented in Java 1.5 with various libraries (e.g., Castor, Ja-
karta, Jdom, LiquidINF, Looks, Xalan, and Xerces) and
stores models in a MySQL V5.0 database. This editor today
supports two UIDLs: UsiXML (http://www. usixml.org) and
XAML (http://archive.msdn.microsoft. com/XAML/), and
could be extended to other UIDLs through a set of XSLT
transformations provided that equivalent concepts exist.

Step 2: Producing an Adapted User Interface Model.
Fig. 2c reproduces a screen shot of an Adaptation Editor with
which the designer can apply any adaptation operation de-
fined in the aforementioned catalogue on the initial UI in or-
der to obtain the final UI after adaptation. For this purpose,
control panels are provided to let the designer applying any
adaptation operation desired on the UI being designed in the
Graphical UI Editor. Any such operation, once executed, is
stored in a log file. Each line of the log file is an instruction
compatible with the EBNF format for adaptation operations.
All lines of adaptation then form a transition scenario stored
in an independent XML file for a transition model (Fig. 2d).

“Undo”, respectively “Redo” operations cancels, respectively
duplicates, the last operation in the file. Fig. 3 reproduces an-
other panel of this Adaptation Editor in which the designer is
applying a selection of UI elements based on the selection
mechanisms introduced in order to apply widget substitution.
The Adaptation Editor consists of 2,600 LOC implemented
in Java 1.5 with some libraries (Jdom, JSearch, Xalan, and
Xerces). The adapted UI is maintained in an adapted UI
model (Fig. 2e).

Figure 3. Some control panels of the adaptation editor.

Step 3: Rendering a Transition Scenario.
Fig. 2f reproduces a screen shot of an Adaptation Editor that
opens a transition scenario to be applied to a UI model. For
this purpose, the transition scenario file (Fig. 2d) is parsed
and animated transitions corresponding to each line of the
scenario (according to Table 3) is produced, equipped with
the user actions described in the previous section. An anima-
tion is then produced that shows the transition from the UI
before adaptation until the UI after adaptation is reached
(Fig. 2g to m). The Animator consists of 1,100 LOC imple-
mented in Microsoft Expression Studio. This environment
has been selected for the following reasons: it is already
compliant with XAML, a XML-compliant UIDL for CUI; all
UI elements of a GUI expressed in XAML are vector-based
and logical operations could be performed on them; animated
transitions of Tables 1 and 3 are already built-in with some
options (like speed, duration); MS Expression Studio com-
prises five products: Expression Blend (for building GUIs for
Silverlight, Windows, and Surface), Expression Blend
SketchFlow (for prototyping these GUIs), Expression Web
(for building Web GUIs), Expression Design (for creating
graphic assets for the Web or Silverlight, Windows, and Sur-
face), and Expression Encoder (for preparing video assets for
the Web or Silverlight, Windows, and Surface). In our case,
we used Expression design to develop the animated transi-
tions based on the AOL defined previously and Expression
Blend for the Animator itself.

In the next subsections, we examine when adaptation opera-
tions could be grouped together in order to reduce the anima-
tion duration while not decreasing its main quality. Anima-
tions could then be executed in series or in parallel.

101

Grouping similar adaptation operations
On the one hand, grouping similar adaptation operations into
one single animated transition instead of playing the same
animated transition several times for several similar adapta-
tion operations makes sense. This would decrease animation
duration (thus reducing animation lag [35]) and produce a
global animation at once (thus improving the understandabil-
ity of the whole adaptation process executed through the
transition scenario). For instance, instead of moving up two
horizontally aligned push buttons one after another (as in Fig.
2j, k), they could be moved all at once. Similarly, a same ad-
aptation operation performed on a series of physically adja-
cent widgets could lead to a grouped animated transition:
right resizing a column of edit fields could be done at once in
one single animated transition. On the other hand, grouping
similar adaptation operations should consider human limita-
tions: no occlusion, no overlapping should be induced; the
cognitive load of the animated transition should be mini-
mized; the amount of widgets subject to animation should be
reduced. Psychophysics research has revealed that average
end users cannot track more than five objects in movement
[9]. Therefore, the EBNF allows specifying grouped adapta-
tion operations, but it does not check whether any such limi-
tation occurs.

Grouping dissimilar adaptation operations
It is also possible to consider grouping dissimilar adaptation
operations under certain conditions. Typically, such a group-
ing could be made possible when several different animated
transitions affect the same widget but in different ways. For
instance, replacing a list box by a drop down list while
enlarging the resulting widget is acceptable as long as the as-
sociated animated transitions affect different portions of the
same widget or non-overlapping regions in the same con-
tainer. In contrast to similar operations where all operations
could be performed at once, in this case the transitions cannot
be executed all at once, but in a way that could be perceived
together, e.g. by fading in/out. This situation is acceptable
provided that the amount of transitions per widget does not
exceed a certain threshold.

USER STUDY ON SUBJECTIVE PERCEPTION
After describing how a transition scenario could be dynami-
cally produced at run-time, we report on a user study on the
subjective perception of end users when confronted to a tran-
sition scenario of animated transitions showing UI adaptivity.
The purpose of the study was to examine whether the transi-
tion scenario helps users to understanding it.

Participants
We conducted a user trial of 20 users (6 female, 14 male)
who were recruited from a database of volunteers coming
from different disciplines (e.g., marketing, finance, phar-
macy, medicine) and having different ages and background.

Method
The participant’s task was to watch 3 transition scenarios: a
personal information form as a simple scenario to foster ini-
tial understanding of the whole process; an address book
adapted for a PDA (Fig. 2g to m) as a moderately-complex

scenario to illustrate other adaptation operations, and the
connexion between the two previous ones as a more complex
example in order to illustration dialogue and navigation.
Then participants had to demonstrate their appreciation of the
animation process by answering a questionnaire made up of a
section of 12 closed questions and 3 open questions (i.e.,
what are the aspects that you liked the most, what are the as-
pects that you disliked the most, what do you suggest in order
to improve the quality of the animation). In the closed part of
the questionnaire, we asked the participants to respond to a
series of positive statements on a scale of one to five (1 =
strongly disagree, five = strongly agree). The first two state-
ments on the questionnaire tested user satisfaction with the
two interfaces. The statements were:

1. I liked the animation process
2. I liked the animation interface
3. I preferred the animation over no animation at all
4. The animation is easy to use
5. The animation is easy to control
6. The animation is easy to understand
7. The animation is easy to follow
8. The animation is easy to progress (forward an.)
9. The animation is easy to revert (backward an.)
10. The animation represents the adaptation
11. The animation is fast
12. I would recommend using the animation

Results and Discussion
The cumulated histogram in Figure 4 summarizes the re-
sponses to the statements included in the questionnaire. The
distribution for statement #1 revealed that nobody had a
negative feeling about having an animation of the transition
scenario (neither orange nor red areas). But some participants
were concerned about the Animator UI: the distribution of
responses for statement #2 shows this, while the preference
(statement #3) follows a similar trend. Participants appear,
however, to show a preference for the animation over no
animation at all (p = 0.031 for a one-tail t-test with 19 de-
grees of freedom). But this does not mean that the animation
should always come automatically, as suggested in statement
#4: participants seemed to appreciate the animation effects,
but do not appreciate the time consumed by the animation,
especially when the total animation time is long. Rather, they
prefer to keep control over the transition scenario with user
actions, but it turns out that they do not know exactly what
user action to undertake since they do not know what the
next adaptation operations are.

Forward animation (statement #8) is perceived in a better
way that the backward animation (statement #9). The last
statement (#12) on the questionnaire verifies the results of the
global perception responses by asking the participants to re-
spond to a recommendation statement: three quarters of the
participants were confident in recommending the animation
transition as a mechanism for showing the adaptation. These
results are more moderate than the initial statements.

102

1 2 3 4 5 6 7 8 9 1011121314151617181920

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

I strongly disagree I disagree I am so so I agree I strongly agree

Figure 4. Distribution of participants’s responses.

When asked to freely comment on potential improvements to
the transition scenario, users had several suggestions. Six of
the twenty participants suggested some mechanisms for
grouping more animated transitions together while animating
the scenario. Several participants recommended finding out
such mechanisms in order to reduce the total time. Therefore,
the lag problem [35] is still important. Participants however
recognized that the animation is adequately shown by the
animation (statement #10), which is confirmed by several in-
formal comments. Participants perceive less disruption since
there is a transition between the UIs before and after adapta-
tion and felt less perturbation. In addition, some participants
confessed that they felt more trust in the system when an
animation shows the adaptation, but that this could be rein-
forced by on-demand explanation. They also said that, if they
see some transition like that for one or two UIs subject to ad-
aptation, they would trust more the system and ask less the
animation in the future.

CONCLUSION
This paper presented a method for showing the adaptation
process to the end user by animating its transition scenario
from the UI before adaptation until the UI after adaptation is
reached. A user study was conducted to determine what the
subjective perception of the transition scenario on end users
was. This study revealed some advantages (e.g., global ap-
preciating, a perception that the end user disruption and the
cognitive perturbation were reduced, increase of trust), but
also some shortcomings to be addressed in the future (e.g.,
enabling faster animation, including on-demand explanation
of why this or that adaptation operation has been executed),
better capabilities to bypass, group or compact some adapta-
tion operations. In the near future, conducting an experimen-
tal study to determine the exact cognitive load of each ani-

mated transition and their adequacy with respect to the adap-
tation operation would be welcome. In this work, we only es-
tablished such an adequacy based on cognitive psychology
and usability guidelines for animation, which is a qualitative
approach. A quantitative approach is a desirable for the next
step, although different factors may influence these results
that are hard to quantify.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the ITEA2-
Call3-2008026 USIXML (User Interface extensible Markup Lan-
guage) European project and its support by Région Wallonne DGO6
as well as the FP7-ICT5-258030 SERENOA (Multidimensional con-
text-aware adaptation of Service Front-ends) project supported by
the European Commission. The authors would like also to thank the
anonymous reviewers, particularly the one who has been the most
criticizing, thus triggering new directions to explore and to general-
ize the work already done.

REFERENCES
1. Baecker, R. and Small, I. Animation at the interface. In: B. Lau-

rel (Ed.), The Art of Human-Computer Interface Design. Addi-
son-Wesley, New York (1990).

2. Baudisch, P., Tan, D., Collomb, M., Robbins, D., Hinckley, K.,
Agrawala, M., Zhao, S., and Ramos, G. Phosphor: Explaining
Transitions in the User Interface Using Afterglow Effects. In
Proc. of ACM Symposium on User Interface Software Technol-
ogy UIST’2006 (Montreux, October 15-18, 2006). ACM Press,
New York (2006), pp. 169-178.

3. Bederson, B.B. and Boltman, A. Does Animation Help Users
Build Mental Maps of Spatial Information? In Proc. of IEEE
Symposium on Information Visualization InfoVis’99. IEEE
Computer Society Press, Los Alamitos (1999), pp. 28–35.

4. Bladh, T., Carr, D.A., and Kljun, M. The Effect of Animated
Transitions on User Navigation in 3D Tree-Maps. In Proc. of
the 9th Int. Conf. on Information Visualization InfoVis’2005.
IEEE Computer Society, Los Alamitos (2005), pp. 297–305.

5. Bétrancourt, M. and Tversky, B. Animation, can it facilitate?
Int. J. of Human Computer Studies 57, 4 (2002), pp. 247–262.

6. Bezerianos, A., Dragicevic, P., Balakrishnan, R. Mnemonic
Rendering: An Image-Based Approach for Exposing Hidden
Changes in Dynamic Displays. In Proc. of ACM Symposium on
User Interface Software Technology UIST’2006 (Montreux,
Oct. 15-18, 2006). ACM Press (2006), pp. 159-168.

7. Browne, D., Totterdell, P., and Norman, M. (Eds.). Adaptive
User Interfaces. Computers and People Series. Academic Press,
Harcourt Brace Jovanovich Publishers, London (1990).

8. Bunt, A., Conati, C., and McGrenere, J. What role can adaptive
support play in an adaptable system? In Proc.of the 9th Int. Conf.
on Intelligent User Interfaces IUI’2004 (Funchal, Jan. 13-16,
2004). ACM Press, NY (2004), pp. 117-124.

9. Cavanagh, P. and Alvarez, G. Tracking multiple targets with
multifocal attention. Trends in Cognitive Science, 9, 7 (July
2005), pp. 249–354.

10. Chang, B.-W. and Ungar, D. Animation: From Cartoon to User
Interface. In Proc. of ACM Symposium on User Interface Soft-
ware Technology UIST’93 (Atlanta, November 3-5, 1993).
ACM Press, New York (1993) pp. 45–55.

11. Dieterich, H., Malinowski, U., Kuhme, T., and Schneider-
Hufschmidt, M. State of the art in adaptive user interfaces. In:
Schneider-Hufschmidt, M., Kuhme, T., Malinowski, U. (Eds.),

103

Adaptive User Interfaces Principles and Practice. Elsevier Sci-
ence Publishers B.V., Amsterdam (1993), pp. 13–48.

12. Dunn, C. The Use of Real-Time Simulation by Means of Ani-
mation Film as an Analytical Design Tool in Certain Spatio-
Temporal Situations. Ergonomics, 16 (1973), pp. 515–519.

13. Escribano, J.G., Manrique, G.M., Haya Coll, P.A. iFaces: Adap-
tive User Interfaces for Ambient Intelligence. In Proc. of IADIS
Int. Conf. on Interfaces and Human Computer Interaction
IHCI’2008 (Amsterdam, July 25-28, 2008). InderScience.

14. Fialho, A.T.S. and Schwabe, D. Enriching Hypermedia Applica-
tion Interfaces. In Proc. of 7th Int. Conf. on Web Engineering
ICWE’2007 (Como, July 16-20, 2007). LNCS, Vol. 4607.
Springer-Verlag, Berlin (2007), pp. 188-193.

15. Findlater, L. and McGrenere, J. Impact of screen size on per-
formance, awareness, and user satisfaction with adaptive
graphical user interfaces. In Proc. of the 26th ACM Conf. on
Human Factors in Computing Systems CHI’2008 (Florence,
April 2008). ACM Press, New York (2008), pp. 1247–1256.

16. Florins, M., Montero, F., Vanderdonckt, J., and Michotte, B.
Splitting Rules for Graceful Degradation of User Interfaces. In
Proc. of 8th Int. Working Conference on Advanced Visual Inter-
faces AVI’2006 (Venezia, 23-26 May 2006). ACM Press, New
York (2006), pp. 59–66.

17. Gajos, K.Z., Czerwinski, M., Tan, D.S., and Weld, D.S.. Explor-
ing the design space for adaptive graphical user interfaces. In
Proc. of 8th Int. Working Conference on Advanced Visual Inter-
faces AVI’2006 (Venezia, 23-26 May 2006). ACM Press, New
York (2006), pp. 201–208.

18. Gajos, K.Z., Everitt, K., Tan, D.S., Czerwinski, M., and Weld,
D.S. Predictability and accuracy in adaptive user interfaces. In
Proc. of the ACM Conf. on Human Factors in Computing Sys-
tems CHI’2008 (Florence, April 5-10, 2008). ACM Press, New
York (2008), pp. 1271–1274.

19. Gardiner, M. and Christie, B. Applying Cognitive Psychology to
User Interface Design. John Wiley, New York (1987).

20. Heer, J. and Robertson, G. Animated Transitions in Statistical
Data Graphics. IEEE Transactions on Visualization and Com-
puter Graphics 13, 6 (Nov. 2007), pp.1240-1247.

21. Hong, W., Thong, J.Y.L., and Tam, K.-Y. Does Animation At-
tract Online Users’ Attention? The Effects of Flash on Informa-
tion Search Performance and Perceptions. Information Systems
Research 15, 1 (2004), pp. 60–86.

22. Huhtala, J., Mäntyjärvi, J., Ahtinen, A., Ventä, L., and Iso-
mursu, M. Animated Transitions for Adaptive Small Size Mo-
bile Menus. In Proc. of the 12th IFIP TC 13 Int. Conf. on Hu-
man-Computer Interaction Interact’2009 (Uppsala, August 24-
28, 2009). Lecture Notes in Computer Science, Vol. 5726,
Springer-Verlag, Berlin (2009), pp. 772-781.

23. Huhtala, J., Sarjanoja, A.-H., Mäntyjärvi, J., Isomursu, M. and
Häkkilä, J. Animated UI transitions and perception of time: a
user study on animated effects on a mobile screen. In Proc. of
ACM Conf. on Human Aspects in Computing Systems
CHI’2010. ACM Press, New York (2010), pp. 1339–1342.

24. Jameson, A. Adaptive Interfaces and Agents. In: Jacko, J.A.,
Sears, A. (Eds.), Human–Computer Interface Handbook. Law-
rence Erlbaum, Mahwah (2003), pp. 305–330.

25. Kaber, D.B. and Endsley, M.R. The effects of level of automa-
tion and adaptive automation on human performance, situation
awareness and workload in a dynamic control task. Theoretical
Issues in Ergonomics Science 5, 2 (2004), pp. 113–153.

26. Kerren, A, Stasko, J., Algorithm Animation, Introduction of
Software Visualization, State of the Art Survey. LNCS, Vol.
2269. Springer-Verlag, Berlin (2002), pp. 1-15.

27. Lavie, T. and Meyer, J. Benefits and costs of adaptive user inter-
faces. Int. J. of Hum.-Comp. Stud., 68 (2010), pp. 508–524.

28. May, J., Dean, M.P., and Barnard, P.J. Using Film Cutting
Techniques in Interface Design. In Human-Computer Interac-
tion, Vol. 18, Lawrence Erlbaum Ass. (2003), pp. 325–372.

29. Rensink, R.A., O’Regan, J.K., and Clark, J.J. To see or not to
see: the need for attention to perceive changes in scenes. Psy-
chological Science 8, 8 (1997), pp. 368–373.

30. Rogers, S., Fiechter, C.N., and Thompson, C. Adaptive user in-
terfaces for automotive environments. In Proc. of the IEEE
Symposium on Intelligent Vehicles Dearborn. IEEE Computer
Society Press, Los Alamitos (2000), pp. 662–667.

31. Schlienger, C., Dragicevic, P., Ollagnon, C., and Chatty, S. Les
transitions visuelles différenciées : principes et applications. In
Proc. of IHM’2006 (Montréal, 18-21 April 2006). ACM Int. Se-
ries, Vol. 133 (2006), pp. 59–66.

32. Schlienger, C., Conversy, S., Chatty, S., Anquetil, M., and
Mertz, Ch. Improving Users’ Comprehension of Changes with
Animation and Sound: An Empirical Assessment. In Proc. of
Interact’2007 (Rio de Janeiro, 2007). LNCS, Vol. 4662,
Springer-Verlag, Berlin (2007), pp. 207–220.

33. Sherman, R., Alpert, J.K., Karat, C., Carolyn, B., and Vergo, J.
User attitudes regarding a user-adaptive e-commerce web site.
User Modeling and User-adaptive Interaction 13, 4 (2003), pp.
373–396.

34. Smith, S.L. and Mosier, J.N. Design guidelines for the user in-
terface software. Technical Report ESD-TR-86-278 (NTIS No.
AD A177198), U.S. Air Force Electronic Systems Division,
Hanscom Air Force Base, Massachusetts (1986).

35. Stasko, J. Animation in User Interfaces: Principles and Tech-
niques. In Proc. of User Interface Software ‘93, pp. 81–101.

36. Sukaviriya, P. and Foley, J. Coupling a User Interface Frame-
work with Automatic Generation of Context Sensitive Animated
Help. In Proc. of ACM Symposium on User Interface Software
Technology UIST’90 (Snowbird, Oct. 1990). ACM Press, New
York (1990), pp. 152–166.

37. Teevan, J., Dumais, S.T., Liebling, D.J., and Hughes, R. A Lon-
gitudinal Study of How Highlighting Web Content Change Af-
fects People’s Web Interactions. In Proc. of ACM Conf. on Hu-
man Aspects in Computing Systems CHI’2010. ACM Press,
New York (2010), pp. 1353-1356.

38. Thomas, B.H. and Calder, P. Applying Cartoon Animation
Techniques to Graphical User Interfaces. ACM Trans. on Com-
puter-Human Interaction 8, 3 (Sept. 2001), pp. 198–222.

39. Tucker, J.B. Computer Graphics Achieves New Realism. High
Technology (June 1984), pp. 40–53.

40. Vanderdonckt, J. and Gillo, X. Visual Techniques for Tradi-
tional and Multimedia Layouts. In Proc. of 2nd ACM Workshop
on Advanced Visual Interfaces AVI'94 (Bari, 1-4 June 1994),
ACM Press, New York (1994), pp. 95–104.

41. Ware, C., Neufeld, E. and Bartram, L. Visualizing Causal Rela-
tions. In: Proc. of IEEE Symposium on Information Visualiza-
tion InfoVis’99. IEEE Computer Society Press, Los Alamitos
(1999), pp. 39–42.

104

