
TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 75

SketchiXML: Towards a Multi-Agent Design Tool for
Sketching User Interfaces Based on USIXML

Adrien Coyette, Stéphane Faulkner, Manuel Kolp, Quentin Limbourg, Jean Vanderdonckt
Université Catholique de Louvain, School of Management (IAG)

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
{coyette, faulkner, kolp, limbourg, vanderdonckt}@isys.ucl.ac.be – www.isys.ucl.ac.be/staff

Phone: +32-1047 {8379,8990, 8395, 8384, 8525} – Fax: +32-10478324

ABSTRACT
During these last years, many researchers have proposed
new alternatives for early interface design based on hand-
sketch. But these new alternatives seem to be dedicated to
obsolescence as they only offer the possibility to generate
user interfaces for a single platform in a unique language.
Indeed, in a context where the number of computing-
platforms and system environments is exploding, new
alternatives should be considered. This paper presents an
innovating alternative with SketchiXML, a multi-agent
application able to handle several kinds of hand-drawn
sources as input, and to provide the corresponding
specification in USIXML (USer Interface eXtensible
Markup Language), a platform-independent user interface
description language.

ACM Classification Keywords
D.2.1 [Software Engineering]: Requirements/
Specifications – elicitation methods (e.g., rapid
prototyping, interviews, JAD). D.2.2 [Software
Engineering]: Design Tools and Techniques – user
interfaces. H.5.2 [Information Interfaces and
Presentation]: User Interfaces – Multi-agents,
Prototyping, Graphical User Interfaces (GUI). I.3.6
[Computer Graphics]: Methodology and Techniques
interaction techniques.

General terms
Design, Languages, Human Factors.

Author Keywords
Development processes, multi-platform, multi-path
development, user interface description language, multi-
agent architecture, BDI, SKwyRL, interface sketching,
user interface engineering.

INTRODUCTION
Most interfaces designers consider hand-sketch on paper
as the most effective way to represent the first drafts of
the future interfaces. Indeed, this kind of unconstrained
approach is fast and easy and permits the designer to

focus on basic structural issues instead of unimportant
details. But computer assisted interfaces design also offer
a range of advantages such as the possibility of easily
erasing or moving components. This perspective was at
the origin of huge efforts during the last decade, where
numerous of computer design environment came on the
scene, with famous software like Borland JBuilder,
Microsoft Visual Basic and others. However, these
elements-approach based software did not generate the
saving of time expected during the early design;
designers have reported that clients or even other
designers tend to focus on details such as color, exact
alignment or typography when using high fidelity mocks-
up [7]. In response to the uncovered gap between these
two approaches, many researches were carried out in
order to propose alternatives based on a hybrid approach,
taking the best of the hand-sketching and of computer
assisted interfaces design. Two major orientations have
appeared among all the computer-sketch tool considered,
one orientation considers the design process as a creative
process that should not be interrupted, and thus only offer
to the user to sketch the interfaces and the scenarios
[1,11]. The second orientation couples the design process
with an interpretation of the interfaces sketched in a
programming language [2, 15]. The two approaches will
be discussed in the next section, and on basis of the
analysis of the different design tools, we will propose an
extension to overcome some drawbacks of the second
orientation.

This paper will present the agent-architecture used to
design SketchiXML, a new kind of application for early
interface design based on hand-sketch drawing. Sketchi-
XML is different from others sketching applications as it
provides more than user interfaces (UIs) in a specific
programming language; it provides the specification of
the interface in UsiXML (www.usixml.org) [12, 14], a
platform-independent UI Description Language (UIDL).
Moreover, SketchiXML assists the developer during the
design process in a flexible way defining how the
different experts composing the application must
participate in the design process. As an example, the user
may request that the interfaces critiquing experts provide
real time advice on all the issues encountered, or just on
the major issue.

These requirements fit very well the agent oriented
paradigm. Indeed multi-agent architectures appear to be
more flexible, modular and robust than traditional,
including object-oriented ones. Multi-agent architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

TAMODIA’04, Prague, Czeck Republic.
Copyright ©2004 ACM 1-59593-000-0/04/0011…$5.00

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 76

represent dynamic and evolving structures and
components which can change at run time to benefit from
new knowledge or components [10].

The structure of the paper will be as follow: the two next
sections establish the research context with an
introduction to the related works of the different domain
linked to the application, and with an illustrative scenario
of SketchiXML. Section 3 proceeds to an introduction to
the SKwyRL framework (Socio-Intentional ArChitecture
for Knowledge Systems and Requirements Elicitation -
http://www.isys.ucl.ac.be/skwyrl [5]), which is dedicated
to the specification of BDI multi-agent systems. Section 4
introduces UsiXML, a language allowing designers to
apply a multi-path development of UIs. Section 5
presents the multi-agent architecture of SketchiXML. The
last section concludes and proposes some ideas for future
extensions.

SketchiXML will be open source, and will be available
for download on the UsiXML web site as soon as ready
to be shared (see http://www.usixml.org).

RELATED WORK
To uniformly present solutions usually considered for
early interface design, this section gives an overview of
the main alternatives currently used for prototyping.

The paper and pencil approach or the whiteboard/black-
board and post-its approach are often considered as the
most effective way to prototype the future interfaces. The
advantages of these approaches find roots in the fact that
it is easy to have access to all the components, and that
the designer mainly focus on the main issue of the design
rather than on detail.

A second approach is based on the use of drafting tools
such as Macromedia Director or Microsoft Visio. These
tools allow the designer to build quick prototypes of the
future interface using a graphical tool. The result of the
process with this kind of tool is a medium-fidelity mock-
up that cannot be directly used for the code generation.
Moreover, the use of medium-fidelity prototype may
cause the designer to spend too much time on superficial
details while these details are not yet needed.

A third approach, closely related to the drafting tools are
the graphical interfaces builders such as Visual Basic,
Borland JBuilder, etc. These tools allow the designer to
build graphically the final UI in a determined
programming language. Obviously, this approach suffers
from the same problem as the drafting tool in a stronger
way, since this kind of tool produce high-fidelity mock-
ups. But these kinds of tool are very useful for the
interface implementation phase once the early design is
completed.

Other tools, in the same line as the two preceding
approaches, are the “what you see is what you get”
(WYSIWYG) web authoring tools such as Microsoft
FrontPage or Macromedia StudioMX. These tools offer
the same functions than the graphical interface builders,
but they are dedicated to people without specific

knowledge of programming language. The underlying
concept of WYSIWYG used by these kinds of
applications, naturally lead the designer to spend more
time on details than on the core issues.

As explained in the introduction, several alternatives
were produced in response to the uncovered designer
expectancies in the early UIs design domain. Two major
trends appeared from these new alternatives, on one hand
applications that just provide a framework for interface
sketching, and on the other hand applications that couple
the features of the first ones with shapes recognition and
interpretation.

The major tools for interfaces prototyping based on hand-
sketch without shapes recognition are DENIM [11] and
DEMAIS [1]. DENIM is a sketch-based web site design
application for early stage of design. It allows sketching
the web pages, to create the links between the pages with
the use of a storyboard, and to see the interaction in
practice thanks to a run mode. DEMAIS is also a hand-
sketch based web site design for early stage of design,
and offers almost the same features. The major difference
between these tools is graphical presentation of the
dialogue. DENIM works on a single plane, while
DEMAIS uses the concept of layers. A first layer
contains all the widgets sketched, a second layer contains
annotations, and a third layer contains a set of sketch
describing the temporal and interactive behavior. As is
the case with DENIM, the interaction can be visualized
thanks to a run mode.

JavaSketchIt [2] and Freeform [15] are the two major
applications for interface design based on hand-sketch
recognition. JavaSketchIt proceeds in a slightly different
way than Freeform, as it recognizes the shapes drawn by
the user in real time, and generates a Java UI as output.
Freeform only recognizes the shapes once the design of
the whole interface is completed, and produces Visual
Basic 6 UIs.

To identify differences between the tools evoked above,
we present with Fig. 1 a summary as a cross table where
all the applications are evaluated on basis of nine
attributes. This evaluation is built on basis of a set of
evaluation provided by frequent users. Some results in
the table may appear surprising as the applications are
only evaluated for the early design phase. The attributes
considered are the following:

The Language neutrality attributes represents to what
extend the tool is associated with a specific language.

The Development time represent the time needed to build
a first draft of the interface with this tool.

The Precision attribute represents the accuracy of the
output produced by the considered tool.

• The Pre-requisite knowledge attribute depicts the
expertise needed by the user of the tool.

• The Scenario attribute illustrates the fact that the tool
can handle scenarios or storyboards.

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 77

• The Presentation attribute represents the graphical
coverage of the tool in terms of numbers of widgets
that can be represented.

• The Dialogue attribute represents the ability of the
tools to describe the navigational concept.

• The Representativeness attribute represents the fact that
the interface represented with the tool is close to its
representation in a programming language

• The Compatibility attribute focuses on the naturalness
of the interface construction with the tool.

Language Neutrality

Development time

Precision

Pre-requisite knowledge

Scenario

Presentation

Dialogue

Representativeness

Compatibility
Paper & Pencils ++ +/- +/- ++ + + + - +
MacroMedia Director + - + +/- - ++ - + -
Microsoft Visio + - + +/- - ++ - + -
Visual Basic -- -- ++ +/- - ++ +/- ++ --
Borland JBuilder -- -- ++ +/- - ++ - ++ --
Microsoft FrontPage +/- -- ++ + - ++ +/- ++ --
Macromedia StudioMX +/- -- ++ + - ++ +/- ++ --
DENIM ++ ++ +/- + ++ + ++ -- ++
DEMAIS ++ ++ +/- + ++ + ++ -- ++
JavaSketchIt -- + +/- + - +/- -- +/- +/-
Freeform 2 -- + +/- + - +/- -- +/- +/-

Figure 1. Summary of the tools’ characteristics.

The scope of SketchiXML will be, on one hand, to
combine in a flexible way, the advantages of tools such as
DENIM or DEMAIS with the advantages of tools such as
JavaSketchIt [2]. On the other hand, SketchiXML will
integrate new features such as interface critiquing,
computer-aided generation of specifications, code
generation for multiple computing platforms, multi-
source of input.

Given that SketchiXML will assist the designer during
the design process with usability advice, we will briefly
introduce some relevant related work in the domain of
interfaces critiquing tools. Ergoval [3] appears to be one
of the most interesting works in that area. It allows to
automatically evaluating the usability of any UI under the
windows environment, regardless of the development tool
used or the stage of development cycle.

A second interesting tool related to our application is
SHERLOCK [13]. It is a set of tools aimed at checking
the visual and textual consistency of Graphical User
Interface (GUI). SHERLOCK provides terminology
analysis tools including an Interface Concordance, an
Interface Spellchecker, and Terminology Baskets to
check for inconsistent use of familiar groups of terms.

SCENARIO

In order to give a better understanding of the application,
we will present SketchiXML with a small case study
based on the design of a real estate web site. Once the
future system functionalities are defined, the designer
will proceed to the early prototyping of the future UIs
with the customer. At this level, the designer is just

willing to obtain a global view of the UIs and does not
want to spend time on unimportant details.

In that situation, SketchiXML appears to be very
appropriate as it permits to sketch the UIs as easily as on
paper, but also offers the possibility to generate usability
advices and interface specifications during or at the end
of the process. So, the first step for the designer using
UsiXML will consist in providing all the parameters to be
used by the application.

Figure 2. Settings interface.

Fig. 2 depicts a screenshot of the settings interface where
the designer chooses the level of system support for each
agent, ranging from fully automated to fully manual, the
middle being computer-aided. For instance, Fig. 2 depicts
a situation where the designer does not want to be
interrupted during the design phase. So recognition,
usability advice and UsiXML generation are all set on
manual and output quality is set on the minimum. This
type of configuration is thus appropriated when the
designer wants to have a quick result and does not want
to waste time. The sketching phase in that situation will
be very similar to the sketching process of application
such as DENIM or DEMAIS. Of course, the designer is
always allowed to enable a feature while the process is
running, or to execute it manually. For instance, the
designer starts to sketch the future “search properties”
interface, with all the features disabled.

As the process advances, the future UI becomes more
complex, and the designer decides to set the shapes
recognition and usability advice on automatic mode.
SketchiXML will then analyze the full UI, and provide
real time recognition and UI critiquing. Fig. 3 gives an
illustration of the early design of the “search properties”
interface with the actual version of JavaSketchIt [2]. On
basis of the shapes recognition and interpretation, the
interface critiquing expert expresses usability advices: the
user is advised to center the left button, and to group the
widgets into a container (Fig. 3).

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 78

Figure 3. Sketch of the “search properties” interface with

JavaSketchIt [4].

Then, once the designer considers that the interface
prototype is good enough, the components layout can be
converted in UsiXML if no ambiguities are met.
Otherwise, the system will consider the parameters
entered for the process in order to evaluate how to solve
the ambiguities. For instance, in Fig. 2 observe a situation
where the designer just wants low fidelity specification of
the interface. So, if the system faces ambiguities, it will
just try to disambiguate itself with the help of its
disambiguation algorithms. If the output quality value
was set on high instead of low then the system would
firstly try to disambiguate the situation. If it considers
that the degree of certainty attached to the widgets was
not sufficient, it would ask to the designer to solve the
unsolved ambiguities, with the graphical editor. Fig. 4
gives the UsiXML specifications corresponding to the
interface prototyped on Fig. 3.

The designer will then have the possibility to import the
UsiXML specifications generated from the first draft in
GrafiXML [14]. The main idea behind this progression is
that a UI is rarely designed perfectly from the beginning.
Rather, it progressively evolves from a rough general idea
to a more precise layout as the development life cycle is
evolving. GrafiXML is a UsiXML editor based on a
classical elements-based approach. So, once the designer
has completed the first phase of early design with the
customer, he can thus directly import the specification
and define all the detail that cannot be defined during this
first phase. Fig. 4 gives an illustration of the “search
properties” interface specification imported in
GrafiXML.

When the specifications obtained from SketchiXML are
refined, the designer will have the option to generate
graphical UI in several programming language. Several
interpreters currently exist such as FlashiXML or Tcl-Tk
UsiXML, others are in ongoing development (see
http://www.usixml.org for information).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<cuiModel creationDate="2004-07-14T21:52:43.155-08:00"
name="immo " schemaVersion="1.4.3" id="immo__14"
xsi:schemaLocation="http://www.usixml.org/spec usiXML-cui.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.usiXML.org">
<version modifDate="2004-07-14T22:08:33.191-08:00"
xmlns="">1</version>
<authorName xmlns="">Adrien</authorName>
<comment xmlns="">Generated by SketchiXML </comment>
<window isResizable="false" windowTopMargin="0"
windowLeftMargin="0" isAlwaysOnTop="false" height="588"
width="713" bgColor="#e0dfe3" isEnabled="true" isVisible="true"
fgColor="#000000" borderWidth="0" name="window_0"
id="window_0">
<box relativeMinWidth="0" relativeWidth="0" isFill="false"
relativeHeight="0" isResizableHorizontal="false" type="horizontal"
isScrollable="false" isDetachable="false" isSplitable="false"
isResizableVertical="false" relativeMinHeight="0" isBalanced="false"
isFlow="false" height="588" width="713" isEnabled="true"
isVisible="false" name="box_0" id="box_0">
<imageComponent isEnabled="true" isVisible="true" name="image_0"
id="image_0"/>
<textComponent textMargin="0" isItalic="false" isBold="true"
textFont="Dialog" textColor="#000000" visitedLinkColor="#000000"
isSuperscript="false" isSubscript="false" textSize="12"
textVerticalAlign="middle" isPreformatted="false" isUnderline="false"
isStrikethrough="false" activeLinkColor="#000000"
textHorizontalAlign="left" bgColor="#e0dfe3" isEnabled="true"
isVisible="true" fgColor="#000000" name="label_3" id="label_3"/>
<comboBox isDropDown="false" isEditable="false" bgColor="#ffffff"
isEnabled="true" isVisible="true" fgColor="#000000"
name="combobox_0" id="combobox_0"/>
 […]
<button bgColor="#e0dfe3" isEnabled="true" isVisible="true"
fgColor="#000000" name="button_0" id="button_0"/>
 </box>
 </window>
</cuiModel>

Figure 4. UsiXML specifications of “search properties”.

Figure 5. Import of the specification in GrafiXML.

THE SKWYRL-FRAMEWORK
We describe and specify the architecture of SketchiXML
using the SKwyRL framework [4]. This framework is
aimed to help to design BDI multi-agent system

Usability adviser:
You should consider
centering this button

Usability adviser:
You should consider
grouping these
widgets into a
container

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 79

architectures. It is based on a specific agent Architectural
Description Language (ADL), called SKwyRL-ADL [5],
and a catalogue of re-use organizational styles structuring
the agent interactions [10]. The rest of this section
introduces the key main concepts of multi-agent systems
and presents the SKwyRL Framework.

Multi-Agent Systems and BDI Model
An agent defines a system entity, situated in some
environment, that is capable of flexible and autonomous
action in order to meet its design objective [10]. An agent
can be useful as a stand-alone entity that delegates
particular tasks on behalf of a user. However, in the
overwhelming majority of cases, agents exist in an
environment that contains other agents. Such
environment is a multi-agent system that can be defined
as a social organization composed of agents that interact
with each other to achieve common or private goals [10].
In order to reason about themselves and act in an
autonomous way, agents are usually built on rationale
models and reasoning strategies that have roots in various
disciplines including artificial intelligence, cognitive
science, psychology or philosophy. An exhaustive
evaluation of these models would be out of the scope of
this paper or even this research work. A simple yet
powerful and mature model coming from cognitive
science and philosophy that has received a great deal of
attention, notably in artificial intelligence, is the Belief-
Desire-Intention (BDI) model [9]. This approach has
been extensively used to study the design of rationale
agents and is proposed as a keystone model in numerous
agent-oriented development environments such as JACK
[8] or JADEX [9]. The main concepts of the BDI agent
model are (in addition to the notion of agent itself):

Beliefs that represent the informational state of a BDI
agent, i.e. what it knows about itself and the world;

Desires (or goals) that are its motivational state, that is,
what the agent is trying to achieve;

Intentions that represent the deliberative state of the
agent, that is, which plans the agent has chosen for
possible execution.

Organizational Styles
Architectural styles are intellectually manageable
abstractions of system structure that describe how system
components interact and work together. We have defined
multi-agent systems as social organizations composed of
autonomous and proactive agents that cooperate with
each other to achieve common or private goals. A key
aspect to conduct architectural design in SKwyRL is the
specification and use of organizational styles (e.g.,
[4,10]). These are socially-based design alternatives
inspired by models and concepts from organizational
theories that analyze the structure and design of real-
world human organizations.

For instance, the SketchiXML architecture has been
designed following and adapting the joint-venture
organizational style detailed in [4]. In a few words, the

joint-venture organizational style is a meta-structure that
defines an organizational system that involves agreement
between two or more partners to obtain mutual
advantages (greater scale, a partial investment and to
lower maintenance costs…).

Figure 6: i* representation of the Joint Venture

organizational style.

Fig. 6 models the joint-venture organizational style using
i* [17]. i* is a graph, where each node represents an
actor (or system component) and each link between two
actors indicates that one actor depends on the other for
some goal to be attained. A dependency describes an
“agreement” (called dependum) between two actors: the
depender and the dependee. The depender is the
depending actor, and the dependee, the actor who is
depended upon. The type of the dependency describes the
nature of the agreement. Goal dependencies represent
delegation of responsibility for fulfilling a goal; softgoal
dependencies are similar to goal dependencies, but their
fulfillment cannot be defined precisely; task
dependencies are used in situations where the dependee is
required.

As shown in Fig. 6, actors are depicted as circles;
dependums – goals, softgoals, tasks and resources – are
respectively represented as ovals, clouds, hexagons and
rectangles; dependencies have the form depender →
dependum → dependee. From this, a common actor, the
joint manager, assumes two roles: a private interface role
to coordinate partners of the alliance, and a public
interface role to take strategic decisions, define policy for
the private interface, represent the interests of the whole
partnership with respect to external stakeholders and
ensure communication with the external actors. Each
partner can control himself on a local dimension and
interact directly with others to exchange resources, data
and knowledge.

MULTI-PATH UI DEVELOPMENT: USIXML
UsiXML is intended to cover the specification of multiple
models involved in UI design such as: task, domain,
presentation, dialog, and context of use, which is in turn
decomposed into user, platform, and environment. These
models are structured according to the four layers of the
Cameleon framework depicted in Fig. 7: task & concepts
(T&C), Abstract User Interface (AUI), Concrete User
Interface (CUI), and Final User Interface (FUI).

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 80

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform

Task & Concepts

Abstract UI

Concrete UI

Final UI

Task & Concepts

Abstract UI

Concrete UI

Final UI

Source platform Target platform
Figure 7. The Cameleon Reference Framework.

• At the FUI level, the rendering materializes how a
particular UI coded in one language is rendered
depending on the UI toolkit, the window manager and
the presentation manager.

• The CUI level is assumed to abstract the FUI
independently of any computing platform; this level
can be further decomposed into two sub-levels:
platform-independent CIO and CIO type. For example,
a HTML push-button belongs to the type “Graphical
2D push button”. Other members of this category
include a Windows push button and Xml Button, the
OSF/Motif counterpart.

• Since the AUI level is assumed to abstract the CUI
independently of any modality of interaction, this level
can be further decomposed into two sub-levels:
modality-independent AIO and AIO type. For example,
a software control and a physical control (e.g., a
physical button on a control panel or a function key)
both belong to the category of control AIO.

• At the T&C level, a task of a certain type (here,
download a file) is specified that naturally leads to AIO
for controlling the downloading.

SketchiXML will first generate CUI specifications as this
level represents a reasonable degree of expressiveness.
Therefore, we will only describe this model into details in
the next section. AUI specifications can come later on.

Concrete User Interface

A CUI is a UI model allowing a specification of an
appearance and behavior of a UI with elements that can
be perceived by users. A CUI consists of:

• Modality dependent i.e., an instance of a CUI addresses
a single modality at a time. Two modalities fall in the
intended scope of UsiXML: graphical and auditory.

• Platform independent i.e., elements populating a CUI
realize an abstraction of common languages used to
develop UIs.

• Concrete Interaction Objects (CIOs) realize an
abstraction of widget sets found in popular graphical
toolkits (Java AWT/Swing, HTML 4.O, Flash DRK6).
A CIO is defined as an entity that users can perceive
and/or manipulate (e.g., a push button, a list box, a
check box). CIOs are divided into two types: graphical
containers (e.g., window, panel, table, cell, dialog box)
and graphical individual components (e.g., a button, a
text component, a menu, a spin button).

• The layout of the CUI is defined without any absolute
coordinates. A box embedding mechanisms is used to
specify a layout. Alignments between CIOs are defined
with a special relationship called alignment.

• Fig. 4 shows a declaration of a window containing a set
of labels, buttons, text fields, combo boxes allowing
the user to make a query. A CUI is also equipped with
a mechanism, called dialog, allowing the specification
of the dynamic behavior of a CUI. This mechanism
covers a navigation definition language and a powerful
event/action language.

SketchiXML: an agent architecture for interfaces
sketching
In the previous sections, we have introduced the different
feature to be included in SketchiXML. The application
will have to, amongst all, make shapes recognition,
provide spatial shapes interpretation, provide usability
advices, solve ambiguities, and generate UsiXML
specifications. In addition, SketchiXML will also allow
the user to define to what extend the application of these
features must be automated. Indeed, the designer will be
free to define the behavior of the whole application. For
instance, designers may consider that they do not need
usability advices, or that they just want to be advised on
major issues. Some designers may also be willing to
disable the shapes recognition during the design process
as they do not want to be interrupted during the design
process. Moreover, even if not depicted in the previous
sections, SketchiXML will also have to be open and
modular, as new feature are likely to be added later.

On basis of these requirements, we have considered that a
BDI agent-oriented architecture were particularly
judicious. Indeed, such architectures permit to build
robust and flexible applications by distributing the
responsibilities among autonomous and cooperating
agents. In that situation all the agents are in charge of a
specific part of the process, and cooperate together in
order to provide the service required according to the
designer preferences. This kind of approach appears to
be more flexible, modular and robust than traditional
including object-oriented ones.

The following section presents how we have applied the
joint-venture organizational style to design the
architecture of SketchiXML and how we have used
SKwyRL-ADL to formally specify each architectural
aspect (belief, goal, plan, action, interface, configuration,
service) of the application. The joint-venture architectural
style was chosen on basis of non-functional requirement
depicted in [4]. Among all organizational styles defined
in the SKwyRL framework, the joint venture fits to
SketchiXML as it is the most open and distributed
organizational style.

SketchiXML Architecture
Throughout the section 2, we have presented the working
principles of the application with a small scenario. On
basis of that scenario, this section presents the multi-
agent architecture of SketchiXML depicted on figure 8,

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 81

and the distribution of the competencies among the agent
participating in the system.

Fig. 8 shows that the Coordinator plays the role of the
joint manager private interface and that the Broker plays
the role of the joint manager public interface. Other joint
venture partners are the Parser, the Shapes Recognizer,
the Data Editor, the Ambiguity Solver, the Usability
Adviser, the XML Specificator and the Graphical Editor.

Figure 8. The SkechiXML Architecture in joint-venture.

Thus, when a user wishes to create a specification, it
contacts the Broker agent, which serves as an
intermediary between the external actor and the
organizational system. The Broker will query the user for
all relevant information needed for the process, such as
depicted on Fig. 2. According to the criteria entered, the
coordinator will choose the most suitable handling and
coordinates all the agents participating in the process in
order to meet the objectives determined by the user. The
coordinator also plays the role of transmitting the results
back to the Broker, once the specification process is
completed.

Once the user has provided all the information needed for
the process, the coordinator is informed and chooses the
most suitable handling according to the request; in this
case, it contacts the Data Editor agent. Following that,
this agent displays a white board allowing the user to
draw its hand-sketch interface. All the strokes are
collected and then transmitted to the Shapes Recognizer
for identification. The recognition engine of this agent is
based on JavaSketchIt [2] and the CALI library [6],
which appears to be one of the more powerful application
in that domain. Indeed, this application is not only able
to identify shapes of different sizes, rotated at arbitrary
angles, drawn with dashed, continuous strokes or
overlapping lines, but also use fuzzy logic to associate
degrees of certainty to recognized shapes to overcome
uncertainty and imprecision in shape sketches. Thus, the
Shapes Recognizer provide to the parser all the shapes
recognized with all the relevant information such as
location, dimension or degree of certainty. On basis of
these Shape set, the parser will attempt to create a
components layout.

The technique used for the creation of this layout is the
same than the one used by JavaSketchIt, which is based
on a set of fuzzy spatial relations allowing us to deal with

imprecise spatial combinations of geometric shapes. In
addition to widget recognition, the parser agent will have
to integrate a set of usability rules provided by the
usability adviser. The usability adviser will also assist the
designer for the conception of the UIs, if required.
Indeed, the designer may require real-time assistance for
the design process. In this case, on basis of all the
widgets recognized, the agent will proceed to the
interface critique, and utter advice on usability matters.
Eventually, if the Parser fails to identify all the
components or to apply all the usability rules, then the
ambiguity solver agent may be invoked. This agent will
choose how to optimally solve the problem according to
the initial parameters entered by the user. The agent can
either attempt to solve the ambiguity itself using its set of
disambiguation algorithms, or to invoke a third agent, the
graphical editor agent. The graphical editor displays all
the widget recognized at this point, as a classical element-
approach software, and highlights all the components
with low degree of certainty for confirmation. Once one
the last three agents evoked considers the degree on
certainty for all the widgets to be sufficient, the
components layout is transmitted to the XML
Specificator, for conversion to UsiXML.

CONCLUSIONS AND FUTURE WORK
Several researchers have proposed alternatives for code
generation from hand-sketch interface design. But, in a
context where the number of computing-platform and
system environments is exploding, the possibility offered
by all the current application to generate UIs for a single
platform in a unique language, seems to be insufficient.
With SketchiXML we have introduced a new innovative
concept. Firstly, the application will provide UsiXML file
as output, and thus overcome the language neutrality
weakness of the current approaches. Secondly, the
application will be based on a set of experts collaborating
together in a flexible way. Indeed, on basis of the criteria
provided by the designer, the experts will have to adapt
their roles and collaborations. From these requirements,
we have developed trough this paper a formal
specification of the BDI multi-agent architecture of
SketchiXML with the SkwyRL-framework. Each expert
depicted in the requirements is then represented by an
autonomous and collaborative agent part of an
organizational system.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the Request
research project under the umbrella of the WIST
(Wallonie Information Société Technologies)
prorgramme under convention n°031/5592 RW
REQUEST). We also warmly thank Joaquim A. Jorge
and Anabela Caetano for allowing us to use JavaSketchIt
for our research.

REFERENCES
1. Bailey, B.P. and Konstan, J.A. Are Informal Tools Better?

Comparing DEMAIS, Pencil and Paper, and Authorware
for Early Multimedia Design. Proc. of the ACM Conference
on Human Factors in Computing Systems CHI’2003 (Fort

TAMODIA 2004 | PAPERS 15-16 November | Prague, Czech Republic

 82

Lauderdale, April 2003). ACM Press, New York, 2003, pp.
313-320.

2. Caetano, A., Goulart, N., Fonseca, M. and Jorge, J.
JavaSketchIt: Issues in Sketching the Look of User
Interfaces. Proc. of the 2002 AAAI Spring Symposium -
Sketch Understanding (Palo Alto, March 2002). AAAI
Press, pp. 9-14.

3. Farenc, Ch., Liberati, V. and Barthet, M.F. Automatic
Evaluation: What are the Limits? Proc. of 2nd Int.
Workshop on Computer-Aided Design of User Interfaces
CADUI'96 (Namur, 5-7 June 1996), J. Vanderdonckt (ed.).

4. Faulkner, S. and Kolp, M. Towards an Agent Architectural
Description Language for Information Systems. Proc. of
the 5th Int. Conf. on Enterprise Information Systems ICEIS
03 (Angers, April 2003).

5. Faulkner, S., An Architectural Framework for Describing
BDI Multi-Agent Information Systems. Ph.D. Thesis,
Université Catholique de Louvain, Institut d’Adminis-
tration et de Gestion (IAG), Louvain-la-Neuve, Belgium,
May 2004.

6. Fonseca, M.J., Pimentel, C. and Jorge, J.A. CALI: An
Online Scribble Recognizer for Calligraphic Interfaces.
Proc. of the 2002 AAAI Spring Symposium - Sketch
Understanding (Palo Alto, March 2002), pp. 51-58.

7. Hong, J.I., Li, F.C., Lin, J., and Landay, J.A. End-User
Perceptions of Formal and Informal Representations of
Web Sites, Extended Abstracts of Proc. of ACM Conf. on
Human Factors in Computing Systems CHI 2001 (Seattle,
March 31-April 5, 2001). ACM Press, New York, 2001.

8. JACK Intelligent Agents. http://www.agent-software. com/.
9. Jadex BDI Agent Systems http://vsis-www.informatik. uni-

hamburg.de/projects/jadex/.

10. Kolp, M., Giorgini, P. and Mylopoulos, J. An
Organizational Perspective on Multi-agent Architectures.
Proc. of the 8th Int. Workshop on Agent Theories,
architectures, and languages ATAL’01 (Seattle, August
2001).

11. Landay, J.A. Interactive Sketching for the Early Stages of
User Interface Design. Ph.D. thesis, report #CMU-CS-96-
201. Computer Science Department, Carnegie Mellon
University, Pittsburgh, December 1996.

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
and Lopez-Jaquero, V. UsiXML: a Language Supporting
Multi-Path Development of User Interfaces. Proc. of 9th
IFIP Working Conference on Engineering for Human-
Computer Interaction jointly with 11th Int. Workshop on
Design, Specification, and Verification of Interactive
Systems EHCI-DSVIS'2004 (Hamburg, July 11-13, 2004).
Kluwer Academics Press, Dordrecht.

13. Mahajan, R. and Shneiderman, B., Visual and Textual
Consistency Checking Tools for Graphical User Interfaces.
IEEE Trans. Software Engineering 23, 11 (1997) 722-735.

14. Michotte, B., Limbourg, Q., and Vanderdonckt, J.
GrafiXML, A User Interface Builder Based on UsiXML,
IAG, Louvain-la-Neuve, July 2004.

15. Plimmer, B. and Apperley, M. Interacting with Sketched
Interface Designs: An Evaluation Study. Proc. of ACM
Conf. on Human Factors in Computing Systems CHI'04
(Vienna, April 2004). ACM Press, New York, 2004.

16. Wooldridge, M. and Jennings, N.R. (eds.). Special Issue on
Intelligent Agents and Multi-Agent Systems. Applied
Artificial Intelligence Journal 9, 4 (1996).

17. Yu, E. Modeling Strategic Relationships for Process
Reengineering. Ph.D. thesis, Department of Computer
Science, University of Toronto, Toronto, 1995.

