
M.F. Costabile and F. Paternò (Eds.): INTERACT 2005, LNCS 3585, pp. 550 – 564, 2005.
© IFIP International Federation for Information Processing 2005

A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces

Adrien Coyette and Jean Vanderdonckt

Université catholique de Louvain, School of Management (IAG),
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
{coyette, vanderdonckt}@isys.ucl.ac.be

Abstract. Sketching activities are widely adopted during early design phases
of user interface development to convey informal specifications of the inter-
face presentation and dialog. Designers or even end users can sketch some or
all of the future interface they want. With the ever increasing availability of
different computing platforms, a need arises to continuously support sketch-
ing across these platforms with their various programming languages, inter-
face development environments and operating systems. To address needs
along these dimensions, which pose new challenges to user interface sketch-
ing tools, SketchiXML is a multi-platform multi-agent interactive application
that enable designers and end users to sketch user interfaces with different
levels of details and support for different contexts of use. The results of the
sketching are then analyzed to produce interface specifications independently
of any context, including user and platform. These specifications are ex-
ploited to progressively produce one or several interfaces, for one or many
users, platforms, and environments.

1 Introduction

Designing the right User Interface (UI) the first time is very unlikely to occur. In-
stead, UI design is recognized as a process that is [15] intrinsically open (new consid-
erations may appear at any time), iterative (several cycles are needed to reach an
acceptable result), and incomplete (not all required considerations are available at
design time). Consequently, means to support early UI design has been extensively
researched [16] to identify appropriate techniques such as paper sketching, proto-
types, mock-ups, diagrams, etc. Most designers consider hand sketches on paper as
one of the most effective ways to represent the first drafts of a future UI [1,8,10].
Indeed, this kind of unconstrained approach presents many advantages: sketches can
be drawn during any design stage, it is fast to learn and quick to produce, it lets the
sketcher focus on basic structural issues instead of unimportant details (e.g., exact
alignment, typography, and colors), it is very appropriate to convey ongoing, unfin-
ished designs, and it encourages creativity, sketches can be performed collaboratively
between designers and end-users. Furthermore, the end user may herself produce
some sketches to initiate the development process and when the sketch is close
enough to the expected UI, an agreement can be signed between the designer and the
end user, thus facilitating the contract and validation. Van Duyne et al. [16] reported
that creating a low-fidelity UI prototype (such as UI sketches) is at least 10 to 20

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 551

times easier and faster than its equivalent with a high-fidelity prototype (such as pro-
duced in UI builders). The idea of developing a computer-based tool for sketching
UIs naturally emerged from these observations [6,12]. Such tools would extend the
advantages provided by sketching techniques by: easily creating, deleting, updating or
moving UI elements, thus encouraging typical activities in the design process [15]
such as checking and revision. Some research was carried out in order to propose a
hybrid approach, combining the best of the hand-sketching and computer assisted
interface design, but this marriage highlights five shortcomings:

• Some tools only support sketching activities, without producing any output: when
the designer and the end user agreed upon a sketch, a contract can be signed be-
tween them and the development phase can start from the early design phase, but
when the sketch is not transformed, the effort is lost.

• Sketching tools that recognize the drawing do produce some output, but not in a
reusable format: the design output is not necessarily in a format that is directly re-
usable as development input, thus preventing reusability.

• Sketching tools are bound to a particular programming language, a particular UI
type, a particular computing platform or operating system: when an output is pro-
duced, it is usually bound to one particular environment, therefore preventing de-
velopers from re-using sketches in new contexts, such as for various platforms.

• Sketching tools do not take into account the sketcher’s preferences: as they impose
the same sketching scheme, the same gestures for all types of sketchers, a learning
curve may prevent these users from learning the tool and efficiently using it.

• Sketching tools do not allow a lot of flexibility in the sketch recognition: the user
cannot choose when recognition will occur, degrading openness [15] and when
this occurs, it is difficult to return to a previous state.

To unleash the power of informal UI design based on sketches, we need to address
the above shortcomings observed for existing UI sketching tools. The expectation is
thus that UI sketching will be lead to its full potential. SketchiXML is a new informal
prototyping tool solving all these shortcomings, letting designers sketch user inter-
faces as easily as on paper. In addition, SketchiXML provides the designer with on-
demand design critique and assistance during early design. Instead of producing code
specific to a particular case or environment, SketchiXML generates UI specifications
written in UsiXML (User Interface eXtensible Markup Language – www.usixml.org),
a platform-independent User Interface Description Language (UIDL) that will be in
turn exploited to produce code for one or several UIs, and for one or many contexts of
use simultaneously.

In this paper Section 2 demonstrates that state-of-the-art UI sketching tools all suf-
fer from some of the above shortcomings. Section 3 reports on an experimental study
conducted to identify the sketchers’ preferences, such as the most preferred and ap-
propriate UI representations. These results underpin the development of SketchiXML
in Section 4, where these widgets are recognized on demand. The multi-agent archi-
tecture of SketchiXML is outlined to support various scenarios in different contexts of
use with examples. Section 5 discusses some future work and Section 6 demonstrates
that the seven shortcomings above are effectively solved in SketchiXML.

552 A. Coyette and J. Vanderdonckt

2 Related Work

UI prototypes usually fall into three categories depending on their degree of fidelity,
that is the precision to which they reproduce the reality of the desired UI.

The high-fidelity (Hi-Fi) prototyping tools support building a UI that looks com-
plete, and might be usable. Moreover, this kind of software is equipped with a wide
range of editing functions for all UI widgets: erase, undo, move, specify physical
attributes, etc… This software lets designers build a complete GUI, from which is
produced an accurate image (e.g., Adobe Photoshop, PowerPoint) or code in a deter-
mined programming language (e.g., Visual Basic, DreamWeaver). Even if the final
result is not executable, it can still be considered as a high fidelity tool given that the
result provided looks complete.

The medium-fidelity (Me-Fi) approach builds UI mock-ups giving importance to
content, but keeping secondary all information regarding typography, color scheme or
others minor details. A typical example is Microsoft Visio, where only the type, the
size and the contents of UI widgets can be specified graphically.

Low-fidelity (Lo-Fi) drafting tools are used to capture the general information
needed to obtain a global comprehension of what is desired, keeping all the unneces-
sary details out of the process. The most standard approaches for Lo-Fi prototyping
are the “paper and pencil technique”, the “whiteboard/blackboard and post-its ap-
proach” [16]. Such approaches provide access to all the components, and prevent the
designer from being distracted from the primary task of design. Research shows that
designers who work out conceptual ideas on paper tend to iterate more and explore
the design space more broadly, whereas designers using computer-based tools tend to
take only one idea and work it out in detail [6,12,15]. Many designers have reported
that the quality of the discussion when people are presented with a Hi-Fi prototype
was different than when they are presented with a Lo-Fi mock up. When using Lo-Fi
prototyping, the users tend to focus on the interaction or on the overall site structure
rather than on the color scheme or others details irrelevant at this level [16].

Consequently, Lo-Fi prototyping offers a clear set of advantages compared to the
Hi-Fi perspective, but at the same time suffers from a lack of assistance. For instance,
if several screens have a lot in common, it could be profitable to use copy and paste
instead of rewriting the whole screen each time. A combination of these approaches
appears to make sense, as long as the Lo-Fi advantages are maintained. This consid-
eration results two families of software tools which support UI sketching and repre-
senting the scenarios between them, one with and one without code generation.

DENIM [6,10] helps web site designers during early design by sketching informa-
tion at different refinement levels, such as site map, story board and individual page,
and unifies the levels through zooming views. DEMAIS [1] is similar in principle, but
aimed at prototyping interactive multimedia applications. It is made up of an interac-
tive multimedia storyboard tool that uses a designer's ink strokes and textual annota-
tions as an input design vocabulary. Both DENIM and DEMAIS use pen input as a natu-
ral way to sketch on screen, but do not produce any final code or other output.

In contrast, SILK [8], JavaSketchIt [2] and Freeform [11,12] are major applications
for pen-input based interface design supporting code generation. SILK uses pen input
to draw GUIs and produce code for OpenLook operating system. JavaSketchIt pro-
ceeds in a slightly different way than Freeform, as it displays the shapes recognized in

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 553

real time, and generates Java UI code. JavaSketchIt uses the CALI library [6] for the
shape recognition, and widgets are formed on basis of a combination of vectorial
shapes. The recognition rate of the CALI library is very high and thus makes JavaS-
ketchIt easy to use, even for a novice user. Freeform only displays the shapes recog-
nized once the design of the whole interface is completed, and produces Visual Basic
6 code. The technique used to identify the widgets is the same than JavaSketchIt, but
with a slightly lower recognition rate. Freeform also supports scenario management
thanks to a basic storyboard view similar to that provided in DENIM.

Table 1. Comparison of software for low-, medium-, and high-fidelity UI prototyping tools

Fidelity Appearance Advantages Shortcomings

Low
- Sketchy
- Little visual
detail

- Low development cost
- Short production time
- Easy communication
- Basic drawing skills needed

- Is facilitator-driven
- Limited for usability tests
- Limited support of
navigational aspects
- Low attractiveness for end
users

- No code generation

Medium

- Simple
- medium level
of detail, close
to appearance
of final UI

- Medium development cost
- Average production time
- May involve some basic graphi-
cal aspects as specified in style
guide: labels, icons,…

- Limited drawing skills
- Understandable for end user

- Is facilitator-driven
- Limited for usability tests
- Medium support of naviga-
tional aspects

- No code generation

High

- Definitive,
refined

- Look and Feel
of final UI

- Fully interactive
- Serves for usability testing
- Supports user-centered design
- Serves for prototype validation
and contract

- Attractive for end users
- Code generation

- High development cost
- High production time
- Advanced drawing and
specification skills needed

- Very inflexible with respect to
changing requirements

Table 1 summarizes major advantages and shortcomings of existing UI prototyping
tools depending on their level of fidelity. In addition to the shortcomings in the last
column, the shortcomings outlined in the introduction should also be considered to
elicit the requirements of SketchiXML. SketchiXML’s main goal is to combine in a
flexible way the advantages of the tools just presented into a single application, but
also to add new features for this kind of application. Thus SketchiXML should avoid
the five shortcoming above by: (R1) producing UI specifications and generate from
them UI in several programming languages to avoid binding with a particular envi-
ronment and to foster reusability; (R2) supporting UI sketching with recognition and
translation of this sketching into UI specifications in order not to loose the design
effort; (R3) supporting sketching for any context of use (e.g., any user, any platform,
any environment) instead of only one platform, one context; (R4) being based on UI
widget representations that are significant for the designer and/or the end-user; and

554 A. Coyette and J. Vanderdonckt

(R5) performing sketch recognition at different moments, instead of at an imposed
moment. R4 is addressed in Section 3, the others, in Section 4.

Others vital facilities to be provided by SketchiXML are handling input from dif-
ferent sources (R6), such as direct sketching on a tablet or a paper scan, and also re-
ceiving real time advice on two types of issues (R7), if desired: the first occurs in a
post-sketching phase, and provides a set of usability advice based on the UI drawn.
For the second type of advice, the system operates in real time, looking for possible
patterns, or similarities with previously drawn UIs. The objective of such an analysis
is to supplement the sketching for the designer when a pattern is detected. Since the
goal of SketchiXML is to entice designers to be creative and to express evaluative
judgments, we infer the rules enunciated in [15] to the global architecture, and let the
designer parameterizes the behavior of the whole system through a set of parameters
(Section 4).

3 Building the Widgets Catalogue

This section presents the method used to define the widget catalogue. The first sub-
section introduces the method itself. Subsection 2 provides a short analysis of the
results.

3.1 Method

To address requirement R3, SketchiXML recognizes different representations, differ-
ent sketches for the same UI widget. Indeed, the advantage of such a tool lies in the
fact that it imitates the informality of classical low-fidelity tools, and is thus required
to be easy and natural to use. For this purpose, we have conducted an experimental
study aimed at collecting information on how users intuitively sketch widgets. Two
groups of 30 subjects were randomly selected from a list: the first group had relevant
experience in the computer science domain and interface design, while the second
were end users with no specific knowledge of UI design or computer science. The
second group was considered because SketchiXML’ goal is to involve the end user as
much as possible in the early prototyping process to bridge the gap between what they
say and what the designer understands. Thus, the representations may vary between
designers and end users. Fig. 1 depicts the various domains of expertise of each
group.

Fig. 1. Distribution of the subjects according to their domain of expertise

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 555

A two phase analysis was carried out on both groups. The scope of the first part
was to determine how members of each group would intuitively and freely sketch the
widgets to be handled by SketchiXML. From a cross-platform comparison of widgets,
a catalogue was identified comprising the following 32 widgets: text, text field, text
area, push button, search field, login, logout, reset form, validate, radio button, check
box, combo box, image, multimedia area, layer, group box, table, separator, frame,
hyperlink, anchor, list box, tabbed dialog box, menu, color picker, file picker, date
picker, hour picker, toggle button, slider, progress bar, spinner. Each widget was
documented with its English and French name, a screen shot and a small textual defi-
nition (see first three columns of Table 2). For each widget, subjects were asked if
they had ever seen this widget before and to provide a sketching representation. Then,
from the widget representations provided during the first phase, we tried in a second
phase to extract the most common representations, in order to build a second ques-
tionnaire. In this questionnaire, 5 representations were associated with each widget,
and participants were asked to rank the different representations (last column of Table
2) according to their representativeness and preference as a five point Likert scale.
Fig. 2 depicts the propositions for a list box that will be examined as a representative
example in the next subsection.

Table 2. Definition of the widgets catalogue (excerpts)

Widget Graphical
presentation

Textual definition Potential sketchings

Search
Field

This widget is composed
of a text field and a but-
ton. It allows the users to
submit a search.

…

Tabbed
Dialog

Box

This widget allows the
user to switch from one
pane to another thanks to
the tab. …

Date
Picker

This widget allows the
user to pick a date on an
agenda.

List box 1 List box 2 List box 3 List box 4 List box 5

Fig. 2. Sketching propositions for the list box widget

556 A. Coyette and J. Vanderdonckt

3.2 Results and Discussion

Due to space restriction, we mainly focus on the list box widget. Based on the result
distribution showed in Fig 3, we establish the best representation with the following
method. Firstly we assess whether any dependence exists between the participants. If
this first step’s results established a significant dependence, then we proceed to the
second phase and we compute the aggregate preference of both groups and the global
preference. For each widget, the Kendall coefficient of concordance W test was com-
puted. This coefficient expresses the degree of association among n variables, that is,
the association between n sets of rankings. The degree of agreement among the 60
people who evaluated the representations is reflected by the degree of variation
among the 6 sums of ranks.

Fig. 3. Result frequency of the survey regarding the list box

12/)1(

)(

2
1

2

−

−
=
∑

=

NN

RR
W

N

i

i
 = 0,36238

Fig. 4. Computation of W where k is the number of judges, N the number of objects being
ranked, RI the average of the ranks assigned to the ith object, R the average of the rank assigned
across all objects or subjects and N(N²-1)/12 represents the maximum possible sum of the
squared deviations

0

50

100

150

200

Lisbox 3 Lisbox 1 Lisbox 2 Lisbox 4 Lisbox 5

0

50

100

150

200

Lisbox 1 Lisbox 3 Lisbox 2 Lisbox 4 Lisbox 5

100

150

200

250

300

Lisbox 3 Lisbox 1 Lisbox 2 Lisbox 4 Lisbox 5

Fig. 5. Borda Count results for end users, computer scientists and both categories aggregated

The comparison of the value obtained from this computation to the critical value
shows that the null hypothesis (independence between participants) has to be rejected.
We can thus proceed to the second phase of the analysis and establish a ranking
among all representations using the Borda Count method [14]. The principle of the
Borda Count method is that, each candidate gets 1 point for each last-place vote

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 557

received, 2 points for every next-to-last-place vote, etc., all the way up to N points for
each first-place vote where N is the number of candidates. On basis of this analysis
we observed that both groups have almost the same preferences among the represen-
tations (Fig. 5). Most of the time, the set of well considered representations is the
same, even if small changes in the sequence occur. Out of this set, we chose preferred
representations on the basis of intrinsic complexity, which is defined on basis of a set
of criteria such as the number of strokes, the need of new vectorial shapes, high prob-
ability of confusion with other widget… For instance, list box 4 obtained a good score
compared to the other representations, but its intrinsic complexity is very high, since
it requires hand writing recognition, that is not supported for the moment. List box 4
and 5 were thus discarded from the final selection. Often, representations selected for
the list box are composed from the three first representations in Figure 2.

4 SketchiXML Development

After meeting requirement R3 in the previous section, we have to address the remain-
ing requirements, i.e. the application has to carry out shape recognition (R2), provide
spatial shape interpretation (R2), provide usability advice (R7), handle several kinds
of input (R6), generate UsiXML specifications (R1), and operate in a flexible way
(R5). To address these requirements, a BDI (Belief-Desire-Intention) agent-oriented
architecture [4] was considered appropriate: such architecture allows building robust
and flexible applications by distributing the responsibilities among autonomous and
cooperating agents. Each agent is in charge of a specific part of the process, and co-
operates with the others in order to provide the service required according to the de-
signer’s preferences. This kind of approach has the advantage of being more flexible,
modular and robust than traditional architecture including object-oriented ones [4].

4.1 SketchiXML Architecture

The application was built using the SKwyRL-framework [7], a framework aimed at
defining, formalizing and applying socially based catalogues of styles and patterns to
construct agent and multi-agent architectures. The joint-venture organizational style
pattern [7] was applied to design the agent-architecture of SketchiXML [3]. It was
chosen on basis of non-functional requirements Ri, as among all organizational styles
defined in the SKwyRL framework, the joint venture clearly matches the require-
ments defined in Section 2 as the most open and distributed organizational style.

The architecture (Fig. 6) is structured using i* [17], a graph where each node repre-
sents an actor (or system component) and each link between two actors indicates that
one actor depends on the other for some goal to be attained. A dependency describes
an “agreement” (called dependum) between two actors: the depender and the de-
pendee. The depender is the depending actor, and the dependee, the actor who is de-
pended upon. The type of the dependency describes the nature of the agreement. Goal
dependencies represent delegation of responsibility for fulfilling a goal; softgoal de-
pendencies are similar to goal dependencies, but their fulfillment cannot be defined
precisely; task dependencies are used in situations where the dependee is required.

558 A. Coyette and J. Vanderdonckt

When a user wishes to create a new SketchiXML project, she contacts the Broker
agent, which serves as an intermediary between the external actor and the organiza-
tional system. The Broker queries the user for all the relevant information needed for
the process, such as the target platform, the input type, the intervention strategy of the
Adviser agent,... According to the criteria entered, the coordinator chooses the most
suitable handling and coordinates all the agents participating in the process in order to
meet the objectives determined by the user. For clearness, the following section only
considers a situation where the user has selected real time recognition, and pen-input
device as input. So, the Data Editor agent then displays a white board allowing the
user to draw his hand-sketch interface. All the strokes are collected and then transmit-
ted to the Shape Recognizer agent for recognition. The recognition engine of this
agent is based on the CALI library [5], a recognition engine able to identify shapes of
different sizes, rotated at arbitrary angles, drawn with dashed, continuous strokes or
overlapping lines.

Fig. 6. i* representation of SketchiXML architecture as a Joint-Venture

Subsequently, the Shape Recognizer agent provides all the vectorial shapes identi-
fied with relevant information such as location, dimension or degree of certainty asso-
ciated to the Interpreter agent. Based on these shape sets, the Interpreter agent at-
tempts to create a component layout. The technique used for the creation of this layout
takes advantage of the knowledge capacity of agents. The agent stores all the shapes
identified as his belief, and each time a new shape is received all the potential candi-
dates for association are extracted. Using its set of patterns the agent then evaluates if
shape pairs form a widget or a sub-widget. The conditions to be tested are based on a
set of fuzzy spatial relations allowing to deal with imprecise spatial combinations of
geometric shapes and to fluctuate with user preferences. Based on the widgets identi-
fied by the Interpreter, the Adviser agent assists the designer with the conception of the
UIs in two different ways.

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 559

Firstly, by providing real-time assistance to the designer by attempting to detect UI
patterns in the current sketch in order to complete the sketch automatically. Secondly
in a post operational mode, the usability adviser provides usability advice on the inter-
face sketched. If the Interpreter fails to identify all the components or to apply all the
usability rules, then the Ambiguity Solver agent is invoked. This agent evaluates how to
solve the problem according to the initial parameters entered by the user.

The agent can either attempt to solve the ambiguity itself by using its set of disam-
biguation algorithms, or to delegate it to a third agent, the Graphical Editor agent. The
Graphical Editor displays all the widget recognized at this point, as classical element-
based software, and highlights all the components with a low degree of certainty for
confirmation. Once one of these last three agents evoked has sufficient certainty about
the overall widget layout, the UI is sent to the XML Parser agent for UsiXML
generation.

4.2 Low-Fidelity Prototyping with SketchiXML

The first step in SketchiXML consists of specifying parameters that will drive the
low-fidelity prototyping process (Fig. 7): the project name, the input type (i.e. on-line
sketching or off-line drawing that is scanned and processed in one step-Fig. 8), the
computing platform for which the UI is prototyped (a predefined platform can be
selected such as mobile phone, PDA, TabletPC, kiosk, ScreenPhone, laptop, desktop,
wall screen, or a custom one can be defined in terms of platform model [9]), the out-
put folder, the time when the recognition process is initiated (ranging from on-
demand manual to fully automatic each time a new widget can be detected- this flexi-
bility is vital according to experiments and [15]), the intervention mode of the usabil-
ity advisor (manual, mixed-initiative, automatic), and the output quality stating the
response time vs. quality of results of the recognition and usability advisor processes.
In Fig. 7, the UsiXML parsing is set on fully manual mode, and the output quality is
set on medium quality. The quality level affects the way the agents consider a widget

 Fig. 7. Creating a new SketchiXML prototype Fig. 8. Scanned UI sketching

560 A. Coyette and J. Vanderdonckt

layout to be acceptable, or the constraints used for the pattern matching between vec-
torial shapes. The sketching phase in that situation is thus very similar to the sketch-
ing process of an application such as Freeform [11]. Of course, the designer is always
free to change these parameters while the process is running.

Fig. 9 illustrates the SketchiXML workspace configured for designing a UI for a
standard personal computer. On the left part we can observe that shape recognition is
disabled as none of the sketches is interpreted, and the widget layout generated by the
Interpreter agent remains empty. The right part represents the same UI with shape
recognition and interpretation. Fig. 10 depicts SketchiXML parameterized for a Pock-
etPC platform and its results imported in GrafiXML, a UsiXML-compliant graphical
UI editor that can generate code for HTML, XHTML, and Java (http://www.usixml.
org/index.php?view=page&idpage=10).

Fig. 9. SketchiXML workspace

When shape recognition is activated, each time a new widget is identified the color
of the shapes turns to green, and the widget tree generated by the Interpreter is up-
dated. Changing the context has a deep impact on the way the system operates. As an
example, when a user builds a user interface for one platform or another, adaptations
need to be based on the design knowledge that will be used for evaluation, by select-
ing and prioritizing rule sets [15], and on the set of available widgets. As the size of
the drawing area is changing, the set of constraints used for the interpretation needs to
be tailored too, indeed if the average size of the strokes drawn is much smaller than
on a standard display, the imprecision associated with each stroke follows the same
trend. We can thus strengthen the constraints to avoid any confusion.

Once the design phase is complete, SketchiXML parses the informal design to pro-
duce UsiXML specifications. Fig. 11 gives an overview of the UsiXML specifications
generated from UI drawn in Fig. 10. Each widget is represented with standard values
for each attribute, as SketchiXML is only aimed at capturing the UI core properties.
In addition, the UsiXML specifications integrate all the information related to the
context of use as specified in the wizard depicted on Fig. 7: information for the user
model, the platform model, and the environment model [9]. As UsiXML allows defin-
ing a set of transformation rules for switching from one of the UsiXML models to
another, or to adapt a model for another context, such information is thus required.

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 561

Fig. 10. SketchiXML workspace configured for a PDA and its import in GrafiXML

Fig. 11. Excerpt of the UsiXML specifications generated by SketchiXML

562 A. Coyette and J. Vanderdonckt

Fig. 10 illustrates the SketchiXML output imported in GrafiXML, a high fidelity UI
graphical editor. On basis of the informal design provided during the early design, a
programmer can re-use the output without any loss of time to provide a revised ver-
sion of the UI with all the characteristics that can and should not be defined during the
early design phase. This contrasts with a traditional approach, where a programmer
had to implement user interfaces on basis of a set of blackboard photographs or sheets
of paper, and thus start the implementation process from the beginning.

As the Usability Advisor intervention time has been specified as “automatic” (Fig.
7), each time a usability deviation is detected with respect to usability guidelines, a
tool tip message is produced in context, attached to the widget on concern. For this
purpose, a set of form-based usability guidelines have been encoded in GDL (Guide-
line Definition Language), a XML-compliant description of guidelines that can be
directly related to UsiXML widgets.

5 Future Work

Although SketchiXML already provides a wide set of features, many evolutions could
be imagined. Out of many ideas, three major ones retain our attention:

1. One drawback of SketchiXML is the lack of a scenario editor allowing to repre-
sent transition between screen. Capturing such information could be very profit-
able, and is quite natural to represent for a novice designer. Moreover such infor-
mation can be directly stored in the UsiXML model and be reused just as easily as
the code generated for each UI.

2. A second high potential evolution consists in developing an evolutionary recogni-
tion engine. SketchiXML uses the CALI library [5] and a set of spatial constraints
between the vector shapes recognized to build the widget. Even if the recognition
rate is very high, the insertion of new widget representation is restricted to a com-
bination of the set of the vector shapes supported. To this aim, research in a bio-
metric domain such as handwriting recognition [13] could provide valuable an-
swers, taking full advantage of the multi-agent architecture.

3. During the sketching process, the possibility to instantly switch to a runnable
version of the current UI is useful. Indeed, all informal design tools providing
code generation allow easy switching from design to run mode, while
SketchiXML requires to invoke a third application. Right now, SketchiXML only
supports import in GrafiXML. So, we would like to support existing external in-
terpreters that produce Flash, Java, XHTML and Tcl-Tk interpretations (see
www.usixml.org for a list of such interpreters)

6 Conclusion

With SketchiXML we have introduced a new and innovative tool. Firstly,
SketchiXML is the first informal design tool that generates a user, platform, and envi-
ronment independent output and thus provides a solution to the language neutrality
weakness of existing approaches. Secondly, the application is based on a BDI multi-
agent architecture where each requirement is assumed by an autonomous and

 A Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User Interfaces 563

collaborative agent part of an organizational system. Based on the criteria provided by
the designer at the beginning of the process, the experts (agents) adapt the way they
act and interact with the designer and the other agents in order to meet the global
objectives. We have shown that SketchiXML meets requirements R1-R5 that were
identified as important shortcomings of existing tools. Through this research, we have
also conducted a survey on 60 people from different activity sectors with different
backgrounds, in order to identify how these people would intuitively represent the
widgets to be handled by SketchiXML. From these results we have associated a set of
sketching representations to each widget. Moreover, this set of representation is not
hard coded and can be reconfigured by the user through an external configuration file.
SketchiXML will extend a set of tools initiating the design process from the early
design phase to the final concrete user interface, with tools supporting every stage.
The complete widgets catalogue, screen shots, demonstration of SketchiXML and
implementation are available at www.usixml.org. SketchiXML is developed in Java,
on top SKwyRL-framework [7] and JACK Agent platform, with recognition based on
CALI library [5].

Acknowledgements

We gratefully acknowledge the support of the Request research project under the
umbrella of the WIST (Wallonie Information Société Technologies) program under
convention n°031/5592 RW REQUEST). We warmly thank J.A. Jorge, F.M.G.
Pereira and A. Caetano for allowing us to use JavaSketchIt and the CALI library in
our research, Mickaël Nicolay for conducting the user survey and providing the
results, and Gilbert Cockton for helping us in the preparation of this manuscript.

References

1. Bailey, B.P., Konstan, J.A.: Are Informal Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia Design. In: Proc. of the ACM Conf. on Hu-
man Factors in Computing Systems CHI’2003. ACM Press, NY (2003) 313–320

2. Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaSketchIt: Issues in Sketching the
Look of User Interfaces. In: Proc. of the 2002 AAAI Spring Symposium - Sketch Under-
standing (Palo Alto, March 2002). AAAI Press (2002) 9–14

3. Coyette, A., Faulkner S., Kolp, M., Vanderdonckt, J., Limbourg, Q.: SketchiXML: To-
wards a Multi-Agent Design Tool for Sketching User Interfaces Based on USIXML. In:
Proc. of TAMODIA’2004 (Prague, November 2004). ACM Press, New York (2004) 75–82

4. Faulkner, S.: An Architectural Framework for Describing BDI Multi-Agent Information
Systems. Ph.D. Thesis, UCL-IAG, Louvain-la-Neuve (May 2004)

5. Fonseca, M.J., Jorge, J.A.: Using Fuzzy Logic to Recognize Geometric Shapes Interac-
tively. In: Proc. of the 9th Int. Conf. on Fuzzy Systems FUZZ-IEEE'00 (San Antonio,
2000). IEEE Computer Society Press, Los Alamitos (2000) 191–196

6. Hong, J.I., Li, F.C., Lin, J., Landay, J.A.: End-User Perceptions of Formal and Informal
Representations of Web Sites. In: Extended Abstracts of CHI’2001, 385–386

564 A. Coyette and J. Vanderdonckt

7. Kolp, M., Giorgini, P., Mylopoulos, J.: An Organizational Perspective on Multi-agent Ar-
chitectures. In: Proc. of the 8th Int. Workshop on Agent Theories, Architectures, and Lan-
guages ATAL’01 (Seattle, 2001).

8. Landay, J., Myers, B.A.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer 34, 3 (March 2001) 56–64

9. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lopez-Jaquero, V.
USIXML: a Language Supporting Multi-Path Development of User Interfaces. In: Proc. of
9th IFIP Working Conf. on Engineering for Human-Computer Interaction EHCI-
DSVIS'2004 (Hamburg, July 11-13, 2004). Kluwer Academics, Dordrecht (2004)

10. Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Comp. Interaction 18 (2003) 259–324

11. Plimmer, B.E., Apperley, M. Software for Students to Sketch Interface Designs. In: Proc.
of IFIP Conf. on Human-Computer Interaction INTERACT’2003. IOS Press (2003) 73–80

12. Plimmer, B.E., Apperley, M.: Interacting with Sketched Interface Designs: An Evaluation
Study. In: Proc. of CHI'04. ACM Press, New York (2004) 1337–1340

13. Schimke S., Vielhauer C., Dittmann J.: Using Adapted Levenshtein Distance for On-Line
Signature Authentication. In: Proc. of ICPR’2004. Springer-Verlag (2004) 931–934

14. Sidney Siegel and Jr. N. John Castellan. Nonparametric Statistics for The Behavioral Sci-
ences. McGraw-Hill, Inc., second edition, 1988.

15. Sumner, T., Bonnardel, N., Kallag-Harstad, B., The Cognitive Ergonomics of Knowledge-
based Design Support Systems. In: Proc. of CHI'97. ACM Press, New York (1997) 83–90

16. van Duyne, D.K., J.A. Landay, and J.I. Hong, The Design of Sites: Patterns, Principles,
and Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley
(2002).

17. Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis. De-
partment of Computer Science, University of Toronto, Toronto (1995).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

