
Revista Română de Interacţiune Om-Calculator 6 (3) 2013, 269-290 © MatrixRom

Sustaining Designers' and Users' Quality of Life in
the Paradigm of Plastic UIs

Eric Ceret1, Alfonso García Frey2, Sophie Dupuy-Chessa3,
Gaëlle Calvary1
1Grenoble INP, 2UJF, 3UPMF, 123CNRS, 123LIG
41 rue des mathématiques, 38400 Saint Martin d’Hères, France
E-mail: {alfonso.garcia-frey, eric.ceret, sophie.dupuy, gaelle.calvary}@imag.fr

Abstract. Modern User Interfaces need to dynamically adapt to their context of use, i.e.
mainly to the changes that occur in the environment or in the platform. Model-Driven
Engineering offers powerful solutions to handle the design and the implementation of such
User Interfaces. However, this approach requires the creation of an important amount of
models and transformations, each of them in turn requiring specific knowledge and
competencies. This leads to the need of adapted process models and tools sustaining the
designers’ work. Moreover, automatic adaptation to new devices implies that users could
have questions about the interaction with the same UI in such new devices. As this adaption
is automatically performed at runtime, designers cannot foresee all the possible
combinations of contexts of use at design time in order to conveniently support the users.
For this reason, dynamic help systems are necessary to generate dynamic explanations to
the end-user at runtime. This paper presents (1) a new vision of process model flexibility
that makes it possible to adapt the process model to the designer's knowledge and know-
how, (2) the "flexibilization" of the UsiXML methodology, (3) the principles supporting
self-explanatory UIs and (4) the integration of all these notions in UsiComp, an integrated
and open framework for designing and executing plastic User Interfaces. UsiComp relies
on a service-based architecture. It offers two modules, for design and execution. The
implementation has been made using OSGi services offering dynamic possibilities for
using and extending the tool. This paper describes the architecture and shows the extension
capacities of the framework through two running examples.

Keywords: UI Plasticity, Self-Explanatory Interfaces, Process Model Flexibility, Model-
Driven Engineering; User Interfaces; Design Tools.

1. Problem and motivation
With the increasing amount of platforms and devices as well as of the new
expectations of users, designers need to create User Interfaces (UIs) that are
able to adapt to their context of use, i.e. to the changes that occur in the
environment, the platform and/or the user profile. However, the huge

270 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

amount of possible combinations of these context elements makes it no
longer possible to anticipate and predefine all the eventual situations at
design time. Systems have to be designed to be able to adapt themselves to
their context of use while preserving usability (Calvary et al., 2001). Model
Driven Engineering (MDE), which is based on the generation of
applications from models, provides powerful solutions for the creation of
such UIs. In this paradigm the models represent the different facets of the
system to be created. These models are successively transformed and
combined to finally generate the code. This opens possibilities like easier
evolutions and reuse (Hamid et al., 2008), dynamic adaptation to the
context of use, greater quality, early detection of defects and inclusion of
knowledge in executable models (Mohagheghi et al., 2009).

 However, creating all the models and all the transformations for an
application is a long and complicated work: the designer has to understand
the underlying meta-models, write the models that conform to these meta-
models and elaborate some transformations. Then, the designer needs to
create a system that runs the transformations and generates the final code.
The threshold of use, as defined by (Resnick et al., 2005), is high.

 Moreover, plastic UIs demand dynamic help systems as well because
in plastic UIs the resulting UI is not predefined. UIs may adapt themselves
to unforeseen contexts and thus, developers cannot consider all the different
contexts of use one by one at design time, becoming complicated to create
an efficient and contextual helping system for the end-user. For instance,
parts of the UI may be or not be present at a moment or can be distributed
on another device where tasks are accomplished in a very different way, for
instance, using different modalities. While it is interesting to present help
about the absent parts of the UI, it would for instance be very interesting to
provide help about how reaching these parts of the UI in an automatic way,
or explain to the end users how to accomplish a task in the new device of
the new context of use. As this information cannot be specified at design
time, means for dynamically compute such explanations are necessary.

 This paper presents how the UsiXML process model has been
flexibilized to take into account the designers' and developers' skills so that
to provide them with adapted guidance. This "flexibilization" relies on a
new four-dimensional definition of the process model flexibility (Céret et
al., 2013b) and on M2Flex, a flexible process metamodel (Céret et al.,

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 271

2013a). This paper also presents UsiComp, a tool for creating a complete set
of models (Tasks, Abstract UI, Concrete UI, Domain, Context, Mapping,
Quality) and simplifying the creation of transformations. UsiComp design
and execution modules, relying on an extensible service-based architecture,
include an easy graphical interface that offers an efficient way of creating
models by drawing them or by combining predefined components,
permitting fast prototyping possibilities. Finally, the paper also presents
how this framework integrates a model-driven approach for the generation
of self-explanatory UIs, i.e., UIs having the ability for the generating
explanations that support the user in the interaction. This support is
provided in the form of questions and answers.

 This makes it a powerful and innovative tool for designing a system with
a flexible MDE with self-explanation abilities that will help the user during
the interaction.

2. Quality for the Designer: Process Model Flexibility
Designers and developers are poorly satisfied by methods (Garzotto and
Perrone, 2007; Barry and Lang, 2001; Fitzgerald, 1998). They report that
methods (1) do not address various kinds of projects and customers'
constraints, (2) are difficult to learn and to use, (3) impose complex, linear
and rigid processes that are not described in adapted languages.
 The authors of the studies conclude that the process models of the
methods are not flexible or adaptable enough. According to (Booch, 1993)
and (Harmsen, 1997), the process model is part of a method, with the
product model and a collection of tools. It focuses on a facet of the design
and development process - e.g. the tasks to be completed, the products to be
built or the decisions to be made - to describe the activities to be realized.

2.1 Flexibility
Many researches (Basili and Rombach, 1987; Potts, 1989; Harmsen et al.,
1994; Bendraou et al., 2007; Hug et al., 2008) have been driven to evaluate
process model flexibility. In particular, Harmsen, Brinkkemper and Oei
(Harmsen et al., 1994) defined a one-dimension classification for measuring
it, ranging from rigid models to the modular construction of process models.

272 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

In (Céret et al., 2013b), we proposed a taxonomy for evaluating and
comparing process models, based on the study of 49 of them and on several
previous works. This taxonomy offers a new definition of flexibility, based
on four dimensions: variability, distensibility, completeness and
granularability.

 Variability is the possibility offered by a process model to designers of
making choices in a set of variants. For instance, the goal “create the
concept model” can be achieved by several variants like the creation of a
UML class diagram or the definition of tables in a database management
system.

Granularability is the ability of a process model to support elements
with different granularities, e.g. various quantities of details and also to
support various languages. For instance, if the process model includes an
activity for defining a User Interaction (UI) mockup, an expert UI designer
will not need more information. However, a novice UI designer might need
either more details or different a different description, dedicated to someone
who is not familiar with the specific vocabulary of this domain. A granular
process model offers refined and rephrased elements.

 Completeness is the possibility of fulfilling or not the proposed process,
some activities and/or artifacts are then optional or can be replaced by a
predefined result or product. For instance, in a UI design, the activity
"define the platforms model" can be optional; when it is not selected, the UI
is then designed for an implicit platform, or when several platforms are
addressed, it can be replaced by “default” models that the designer picks up
in a repository proposed by the process model.

Distensibility is the ability of a process model to be extended or reduced
at enactment time, i.e. to accept that proposed elements (such as activities,
roles or artifacts) can be avoided from the process or that unexpected
elements can be added to it. The issue is here the definition of mechanisms
for distending the process model during its enactment.

In the following, we present M2Flex, a metamodel based on our
taxonomy and we introduce a flexible version of the UsiXML methodology.

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 273

2.2 M2Flex, a flexible process metamodel
Figure 118 presents an overview of our process metamodel, M2Flex.
Hereafter, we detail the main packages that address flexibility. As we focus
here on flexibility, all classes and attributes are not extensively presented.

Figure 1. M2Flex metamodel overview.

8 As we focus here on flexibility, all packages, classes and attributes are not shown. In all diagrams,

 the attributes whose name is followed by 2 (e.g. status2) are "simple fields" of "deep instantiation"

(Atkinson and Kühne, 2001): when reifying the metamodel, they are instantiated into identical
attributes at model level (and, as usual, into values at object level). We use this mechanism to
 impose, at the metamodel level, attributes that are needed at model level.

274 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

We want to express that various strategies can lead from one main stage
of the process model to another. Inspired by the work done for defining the
Map metamodel (Rolland et al., 1999), we model this package with goals
and strategies. A process model is therefore considered to be composed of
some main GoalsPairs, that represent couples of Goals, one being the a
source and the second being the target.

 A goal represents an important objective of a process model. For
instance, the Cameleon top-down approach (Calvary et al., 2001) defines
four stages: (1) define the task and context models, (2) generate the Abstract
UI, (3) generate the Concrete UI and (4) generate the Final UI. These stages
would be represented as goals in M2Flex. A goal has a name and an
intention, which is a description of its purpose.

 As it is possible to achieve any of these goals in many ways, a
GoalPair is composed of several equivalent Strategies. For instance, a
requirement analysis stage, modeled here as the goal "describe the
requirements", could be reached using a User Centered approach (Norman
and Draper, 1986) or the Map approach (Rolland et al., 1999). This gives
rise to a first form of variability.

 At enactment-time, a Strategy can be selected or not by the designers:
this is modeled by the isSelected attribute with deep instantiation. A
Strategy can be associated to some Conditions that represent the constraints
that have to be fulfilled before the strategy starts. For instance, in
requirements analysis, a User Centered strategy requires the agreement of
the customer and the availability of some end users.

Strategies are concretized into activities, representing the operational
tasks to be realized. In order to represent various amounts of details and
various organization of tasks, activities can be elementary
(ElementaryActivities) or composite (ComplexActivities). For instance, the
complex activity "design the UI" could be composed of some activities such
as "mockup the UI", "evaluate the UI", "Improve the UI". This gives rises to
refinement needed in granularability. An elementary activity has a name, a
type (requirement analysis, coding,...) and an allocation (human, interactive
or system task). The isOptional attribute is computed at process model
enactment-time. It means that the activity can be not executed, i.e. that there
is a path in the process model that does not include this activity. This is
another form of variability. An elementary activity can be expressed in

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 275

various languages thanks to its rephrases relation to an activity, constituting
the second form of the process model granularability.

 The ComplexActivity class offers operators between activities and
elementary activities. These operators are based on the operators used in
task modeling (Nóbrega et al., 2006). After analyzing which operators are
relevant here, we defined a set of 5 n-ary operators: sequential enabling
which requires that activity A is completed before activity B can start, even
if B does not depend on artifacts produced by A; parallel, that allows the
activities to be realized in parallel; choice, which enables the designer to
choose between some equivalent activities, i.e. activities that produce
similar results or outputs. An activity that can be chosen or not is optional,
this is a form of completeness; interleaving which enables activities to be
realized in parallel by a unique agent/role, who can switch from an activity
to another when he wants; disabling, that disables the targeted activities
when the source activity is achieved.

 As activities often require that previous tasks have been completed and
have produced some results, they are associated twice to the Artifacts
package, once as inputs and once as outputs. More concretely, they are
associated to the Status class, that represents the various statuses of an
artifact. This makes it possible for an activity to depend (or to produce) on
an artifact with a specific status, for instance a validated version of an UI.
An artifact can be optional, this is another form of completeness. When an
artifact is optional, the activities that input it are necessarily optional too,
because the inputs they require might be not available. Conversely, if an
artifact is produced by an optional activity, it is optional too.

Activities are also related to Roles, in order to express that some
competencies might be needed to complete the task.

As mentioned before, M2Flex supports all forms of variability,
granularability and completeness. Distensibility can not be addressed by a
metamodel, because it is an issue of enactment time and thereby a question
of tools and validation of the process. This is why M2Flex has been
completed by constraints. For instance, one constraint expresses that, if an
activity requires an artifact as input, there must be another activity that
produces this artifact with the needed status. These constraints make it
possible to verify the process consistency and validity and thus to add or to
avoid elements of the process at enactment time.

276 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

We have compared M2Flex to existing process metamodels, and shown
that M2Flex is the lonely one supporting full flexibility. Please refer to
(Céret et al., 2013a) for more details.

2.3 Application of the UsiXML process model
The UsiXML method (Vanderdonckt, 2005) proposes an approach and a set
of tools for the generation and the execution of plastic UIs. This approach
relies on the successive transformations of a task model into an Abstract UI,
Concrete UI and then into a Final UI, while integrating, amongst others, the
models representing the manipulated concepts and the context.
 UsiXML is already supported by a wide set of various and efficient tools,
but this set offers only a very partial flexibility. For instance, several tools
can be used to create models and to prototype UIs, like SketchiXML
(Coyette and Vanderdonckt, 2005), VisiXML or GraphiXML (Michotte and
Vanderdonckt, 2008). These tools make it possible to create more or less
detailed and precise prototypes, according to the design or development
stage. The prototype can be transformed into a Final UI for various runtime
environments, either by transforming the underlying models directly in
these tools either using some plug-in or specific tools. This palette of tools
offers thus choices, a first form of variability. However, they all require that
the designers create some of the UsiXML models (e.g. user, environment,
domain) and master the rational of these models.
 (Bouillon et al., 2005) also propose some flexibility with the
ResersiXML tool. Indeed, this tool makes it possible to generate an AUI
and a CUI from an existing UI, saving part of the effort required to learn the
models, and bringing ways to reuse existing systems. But this tool has a
limited scope, being devoted to Web only. Thus, the flexibility it offers is
not generalized to all existing systems.

Despite the rich tools palette sustaining UsiXML, the flexibility is
partial, existing knowledge is poorly exploited and the reuse of existing
elements is limited. We propose to increase this flexibility significantly, by
improving the process model. To achieve this, we have modeled the
UsiXML process according to M2Flex, thanks to D2Flex, our tool dedicated
to process modeling. Then we have added, granularability and
completeness. Figure 2 shows some part of the resulting process model.

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 277

Variability has been added thanks to various strategies. Figure 2a shows
goals and strategies. Raising the goal "Generate CUI" (white point #2 one
the figure) after having achieved the goal "Generate AUI" (#1) can be done
thanks to strategy "code AUI2CUI" (#3, meaning creating the needed
transformations) or using the strategy "pick up in repository" (#4, meaning
that transformations can be found in the repository and then adapted if
needed). Variability also relies on choices, as shown on figure 2b, that
details the strategy "Model tasks, domain and environment" (#5). The
designer has to choose how he wants to create the domain model (#6): either
by creating it (#7) or by generating it (#8).

Figure 2. Flexibilized UsiXML process model drawn with D2Flex.

Granularability relies on refinements of activities: figure 2c shows a
sequence of activities for achieving the generation of the domain model
from a database.

Completeness relies here on the possibility to not create by hand all the
models. For instance, if the designer does not want to create his domain
model, he can generate it in several ways (#8), for instance by transforming
the structure of a database into a class diagram (#9). Obviously, the
resulting domain model might be of poor quality, depending on the quality
of the database structure. However, it might be used as a first version of the
domain model, and then improved if needed. Similarly, the designer could

278 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

choose to create the domain model by reusing some know-how he already
masters, for instance by generating it from a UML diagram (#10) or an
XML file (#11) which he knows how to make.

Several parts of the UsiXML process model has been "flexibilized",
making it possible for designers and developers to enact activities requiring
less expertise in Model-Driven techniques, and to reuse their competencies
and know-how. This gives rise to decreasing the threshold of use of Model-
Driven Engineering in UIs development and thus, to an increased quality of
life.

3 Quality for the End User: Self-explanatory UIs
Many works (Lim et al., 2009, Myers et al., 2006, Purchase et al., 2002)
have reported on the benefits of supporting users through explanations in
interactive systems. These explanations address specific questions that users
ask about the User Interface (UI). For instance, how a task can be
accomplished, why a feature is not enabled, or where an option is. Classical
approaches (Horton, 1994), which are based on predefined information such
as static documentation, FAQs, and guides, specify this information at
design time. Their scope is therefore limited because users can have
questions about the UI that are not covered by these kinds of supports.
Moreover, this static documentation is not only a time consuming task but,
additionally, it requires manual updates when the program specification
changes. The problem is critical for plastic UIs where parts of the UI may
be present or not at a given moment, or can be distributed on another
device. To overcome this limitation, some researches (García Frey et al.,
2012) have recently proposed Model-Driven Engineering (MDE) as a
means for supporting users at runtime. Model-Driven UIs use the models
created at design time as their knowledge-base at runtime, exploiting the
models and the relationships between them to find answers to the users'
questions. These kinds of UIs with support facilities based on their own
models are also known as Self-Explanatory UIs. Their main advantages are
that answers are generated at runtime, and they evolve with the program
specification automatically.

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 279

3.1 Model-Based Explanations
Model-Based explanations exists for different types of models an specific
types of questions. An early example that employs a task model (in the form
of user's actions) for explanation purposes is Cartoonist (Sukaviriya et al.,
1990). Cartoonist generates GUI animated tutorials to show a user how to
accomplish a task, exploiting the model for providing run-time guidance.
 (Pangoli and Paterno, 1995) allow users to ask questions such as How can
I perform this task? or What tasks can I perform now? by exploiting a task
model described in CTT. Contrary to Cartoonist, answers are provided in
(Pangoli and Paterno, 1995) in natural language. Tasks modeled in the form
of Petri Nets are used for similar purposes by (Palanque et al., 1993),
answering questions such as What can I do now? or How can I make that
action available again?
 Other works report on the usage of task models as a means for creating
collaborative agents that help the user (Eisenstein J. et al., 2002).
 Behavioral models, presented in different forms, have been also used to
support Why and Why not questions in user interfaces. In (Palanque et al.,
1993) Why questions are answered using the same approach based on Petri
Nets that is exploited for procedural questions. By analyzing the net, it is
possible to answer questions such as Why is this interaction not available?
 The Crystal application framework proposed by (Myers et al., 2006) uses
a “Command Object model” that provides developers with an architecture
and a set of interaction techniques for answering Why and Why not
questions in UIs. Crystal improves users’ understanding of the UI and help
them in determining how to fix unwanted behavior.
 Lim observed (Lim et al., 2009a; Lim et al., 2009b) that why and why
not questions improve users' understanding and confidence of context-aware
systems.
 (Vermeulen et al. 2010) proposes a behavior model based on the Event-
Condition-Action (ECA) paradigm, extending it with inverse actions
(ECAA−1) for asking and answering why and why not questions in
pervasive computing environments.
 These researches show explanations based on individual models that
propose different solutions for questions of specific types. We propose a set
of design principles for homogenize and unify the way in which model-
based explanations can be computed regardless the type of the question or

280 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

the underlying models of the user interface. These self-explanation
principles are described in the next section.

3.2 Self-Explanation Design Principles
The infrastructure (figure 3) consists in two model-based UIs, the self-
explanatory facility for providing the help and the UI of the underlying
application. For a discussion on how to mix both sets of models see (García
Frey et al., 2012). The functional core of the help UI is composed of 4
modules for generating the list of questions (QG), interpreting (I) a user's
request, i.e., inferring the type of question and its parameters, the processor
(P) that computes the answer based on such parameters, and the answer
generator (AG) that presents the answer back to the user. Each of these four
modules of the functional core of the self-explanatory facility has full access
to the models of the underlying application at runtime.

Figure 3. Infrastructure for self-explanatory UIs. The possible questions are generated by the

Question Generator (QG) from the Functional Core of the help facility (FC). For each user's request,
the Interpreter (I) determines its type and parameters, used by the Processor (P) to compute the

answer, which is presented in some form (textual in this prototype) to the user thanks to the Answer
Generator (AG). These four modules use the application models at runtime.

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 281

3.3 Explanation Strategies: Questions / Answers Computation
The infrastructure previously shown in figure 3 allows to compute different
types of questions along with their associated answers at runtime. An
Explanation Strategy describes this process for both questions and answers.
We have built six different explanation strategies for types of questions.
This section reviews some of them. For a more detailed information, please
see (García Frey et al., 2013). As an example of an explanation strategy, the
next section describes how to compute How? questions along with their
own answers, given a UI based on the UsiXML models.

3.4 Procedural Questions – How?
To generate How questions, we explore the task model recursively from the
root task to the leaves. For each node representing a task, we create a
question in a textual form according to the following grammar:

How to + Task.name + ?

where tasks are named starting with a verb following a standardized
convention. An example of a How question is:

How to choose Packs?

Where “choose Packs” is the name of the task inside the task model of
the UI of the application.

The computation of the answer is done as follows. First, we locate the
task inside the task model. Second, we inspect the mapping model that maps
tasks to AUI elements from the AUI model, so we can retrieve the abstract
UI element that resulted from transforming such task. Once the AUI
element has been found, we repeat the procedure to locate the CUI element
derived from this AUI element. This is done by inspecting the mapping
model that keeps track of the transformations from AUI elements to CUI
elements. Once the CUI element has been retrieved, we compose the answer
with following grammar:

Use the + CUI-elem.name + CUI-elem.type

An example of a computed answer using this approach is:

Use the Packs button

282 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

In this example, the CUI-elem.name is “Packs” and the CUI-elem.type is
“button”.

Note that the answer can be completed with the information about the
localization of the widget, which is computed also for Where questions. In
this way, a more elaborated answer for CUI elements that were not directly
visible from the user's were composed as follows:

Use the + CUI-element.name + CUI-element.type +
in the + CUI-element.parent + CUI-element.parent.type

where an example is:

Use the 'Pack Connected Drive' checkbox button in the 'Optional
Equipment' panel.

4. Architecture
The software architecture of UsiComp relies on services. These services are
implemented according to the OSGi specification. The main service is the
Controller Service (figure 4).

Figure 4. UsiComp software architecture: meta-models, models and transformations at the heart of

both design time (IDE for designers) and runtime (FUIs for end-users).

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 283

The Controller Service is in charge of orchestrating the whole process in
which a UI is generated by successive transformations. Transformations
may be reifications or abstractions (Calvary et al., 2001). Reification
(respectively Abstraction) lowers (respectively increases) the level of
abstraction of a model. Currently, only reifications have been implemented
and integrated into UsiComp. However, the architecture is fully generic, and
so capable of integrating abstractions as well. UsiComp (figure 4) is made
of two modules: one for design, another one for runtime. They share
common resources: meta-models, models and transformations.

In order to support flexibility, UsiComp could not rely on a hard-coded
generation process (e.g transform task into AUI, transform AUI into CUI
and so on), that would have been unable to take into account the choices
made by designer. For instance, in such a rigid generation process, the
domain model could not be generated from a database. This is why we
defined a model describing the stages to be executed for generating the UI.
All steps are detailed and ordered accordingly to the decisions made by the
designers.

4.1 Design module
The design module includes a visual editor for designing and prototyping
UIs. The UsiComp editor offers the following functionalities:

• It allows designers to define all the models and transformations
needed to produce a UI. Designers can create models by picking up
the needed components and combining them.

• Transformations between models are composed of rules. A rule
specifies how one specific set of elements of a source model is
transformed into a set of target model elements. Designers can select
what rules they want to apply to a given model, and the system will
automatically compose the resulting transformation. Most common
rules are already available in the system, but designers are free to
add other rules if needed. Transformations and rules are written in
the Atlas Transformation Language (ATL).

• The UsiComp editor verifies that the designed models comply with
their corresponding meta-models. For instance, a binary operator in
the task model must link two different tasks. The UsiComp editor

284 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

also composes and compiles the transformations and rules thanks to
an integrated ATL compiler.

• The resulting Final UI, which is the code of the UI, can be directly
executed from the IDE giving designers the opportunity to preview
the generated UI.

4.2 Runtime module
The UsiComp runtime infrastructure is built on OSGi services. It works as
follows:

• Once a new device becomes available to the framework (a specific
client is installed into the device for this purpose), UsiComp
identifies its specific platform model containing the platform details.
The current version of UsiComp contains platform models specified
by hand.

• The Transformer Service (Figure 4) is a generic transformation
service that can apply any transformation to any model or models,
producing models or text as output.

• To produce the UI, the Controller Service manages the
transformations, their order of execution and their related models
and meta-models, calling to the Transformer Service as many times
as needed. The platform model is considered in the transformation
process to produce an adapted UI.

• In the transformation process, the Controller weaves the functional
core of the application into the UI, embedding the calls from and to
the UI.

The models, meta-models and transformations involved in the generation
are directly accessed by the Controller Service, which is also responsible of
linking the application logic from the functional core to the UI and
viceversa.

UsiComp has been entirely implemented in Java, EMF, and ATL. The
development environment can be launched as a normal Desktop application
or as a Web application embedded in an applet. Thanks to the OSGi
services, it is possible to dynamically update the editor without stopping the

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 285

application. For instance, updating a service or replacing the transformation
language for another one can be dynamically achieved.

5. Conclusions
This paper promotes flexibility of design and development process models,
even at enactment time. The corner stone is M2Flex, a process metamodel
that covers the four dimensions of flexibility: (1) variability, the ability of
the metamodel to provide several equivalent choices, (2) granularability, the
possibility of defining refined and/or rephrased components, (3)
completeness, the possibility of defining optional components and pre-
defined reusable results, and (4) distensibility, the capacity of the resulting
process model to be extended or cut at enactment-time.

M2Flex is original by the flexibility it offers to designers and developers,
not only at design time as it is classically done, but also at enactment-time
which is new to our best knowledge.

We illustrated how this flexibility can improve the quality of life for
designers, making it possible to reuse existing components (e.g. a database),
know-how and knowledge (e.g. creating a XML file). Obviously, the UIs
produced by such a flexible development process cannot be "perfect".
However, thanks to the process flexibility, designers and developers can
reuse parts of their know-how and competencies, and are able to transfer
some existing components into the paradigm of models: it makes it possible
for them to create a first, albeit imperfect, version of their UIs, that they can
iteratively improve, acquiring step by step the needed competencies.

We also have shown how to dynamically support users’ by generating
questions and answers at runtime. We have shown how to use the
underlying models of the UI through explanation strategies to compute such
support. An example of explanation strategy has been provided to answer
How? questions according to the UsiXML models and metamodels.

This way of automatically computing support at runtime allows to help
users in plastic UIs regardless the context of use in which the interaction is
taking place.

286 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

6. Perspectives
In the future, we plan to improve our tools (for instance, with validity
checkers for the constraints to be satisfied). We also plan to create
additional tools like for instance a module for executing the process models
compliant with M2Flex. Attention will be paid to distensibility and to
impact development tools by configuring and/or executing them. We also
intend to make extensions sharable and reusable: for instance, if an activity
is created by a team, it might be made available to others. Finally, as soon
as this series of tools will be available, we plan to evaluate usage and to
collect best practices.

We also intend to extend and complete the flexible design and
development process, in order to integrate, in the one hand, activities for
improving UIs while acquiring competencies and, in the other hand,
activities for designers and developers who already have skills in MDE.

We will conduct evaluations, in order to more comprehensively estimate
the reaction of designers when facing flexibility.

Our future work also includes to test how scalable model-based
explanations are, either with a huge number of models or with a huge
number of users requesting answers.

We will study how to support new types of questions and better support
the current questions that we are able to compute.

We also plan to investigate the use of design rationale questions to
support the learning of HCI design methods.

7. Acknowledgments
This work is funded by the european ITEA UsiXML project.

References
Atkinson, C., Kühne, T., 2001. The Essence of Multilevel Metamodeling, in: Gogolla, M.,

Kobryn, C. (Eds.), ≪UML≫ 2001 — The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 19–33.

Barry, C., Lang, M., 2001. A Survey of Multimedia and Web Development Techniques and
Methodology Usage. Ieee Multimed. 8, 52–60.

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 287

Basili, V.R., Rombach, H.D., 1987. Tailoring the software process to project goals and

environments, in: Proceedings of the 9th International Conference on Software
Engineering, ICSE ’87. IEEE Computer Society Press, Los Alamitos, CA, USA, pp.
345–357.

Bendraou, R., Sadovykh, A., Gervais, M.-P., Blanc, X., 2007. Software Process Modeling
and Execution: The UML4SPM to WS-BPEL Approach, in: EUROMICRO-SEAA. pp.
314–321.

Booch, G., 1993. Object-Oriented Analysis and Design with Applications, 2nd ed.
Addison-Wesley Professional.

Bouillon, L., Limbourg, Q., Vanderdonckt, J., Michotte, B., 2005. Reverse Engineering of
Web Pages based on Derivations and Transformations, in: Proc. of 3 Rd Latin American
Web Congress LA-Web’2005 (Buenos Aires, October 31-November 2, 2005), IEEE
Computer Society Press, Los Alamitos, 2005. pp. 3–13.

Calvary, G., Coutaz, J., Thevenin, D., 2001. A Unifying Reference Framework for the
Development of Plastic User Interfaces, in: Little, M., Nigay, L. (Eds.), Engineering for
Human-Computer Interaction, Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 173–192.

Céret, E., Dupuy-Chessa, S., Calvary, G., 2013a. M2Flex: a process metamodel for
flexibility at runtime. Presented at the Research Challenges in Information Science
(RCIS’2013), Paris, France, pp. 117–128.

Céret, E., Dupuy-Chessa, S., Calvary, G., Front, A., Rieu, D., 2013b. A taxonomy of design
methods process models. Inf. Softw. Technol. Elsevier 55, 795–821.

Coyette, A., Vanderdonckt, J., 2005. A Sketching Tool for Designing Anyuser,
Anyplatform, Anywhere User Interfaces, in: Costabile, M., Paternò, F. (Eds.), Human-
Computer Interaction - INTERACT 2005, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 550–564.

Eisenstein J., Rich, C. Agents and GUIs from Task Models. Information Science. (2002)
Fitzgerald, B., 1998. An empirical investigation into the adoption of systems development

methodologies. Inf. Manage. 34, 317 – 328.
García Frey, A., Calvary, G. and Dupuy-Chessa, S. Users need your models! Exploiting

Design Models for Explanations. In Proceedings of the 26th BCS HCI Group
conference. Birmingham, UK. 12-14 September (2012) Garzotto, F., Perrone, V., 2007.
Industrial Acceptability of Web Design Methods: an Empirical Study. J. Web Eng. 6,
73–96.

García Frey, A., Calvary, G., Dupuy-Chessa, S. and Mandran N. Model-Based Self-
Explanatory UIs for free, but are they valuable? In Proceedings of the 14th IFIP TC13
Conference on Human-Computer Interaction (INTERACT'13), 2-6 September 2013,
Cape Town, South Africa. 2013.

Hamid, B., Radermacher, A., Lanusse, A., Jouvray, C., Gérard, S., Terrier, F., 2008.
Designing Fault-Tolerant Component Based Applications with a Model Driven
Approach, in: SEUS. pp. 9–20.

Harmsen, 1997. Situational Method Engineering. University of Twente, Moret Ernst &

288 Eric Ceret, Alfonso García Frey, Sophie Dupuy-Chessa, Gaëlle Calvary

Young Management Consultants, Netherlands.
Harmsen, F., Brinkkemper, S., Oei, J.L.H., 1994. Situational method engineering for

informational system project approaches, in: Proceedings of the IFIP WG8.1 Working
Conference on Methods and Associated Tools for the Information Systems Life Cycle.
Elsevier Science Inc., New York, NY, USA, pp. 169–194.

Horton, W. Designing and Writing On-line Documentation (2nd ed). New York: John
Wiley & Sons. (1994)

Hug, C., Front, A., Rieu, D., 2008. A Process Engineering Method based on a Process
Domain Model and Patterns, in: Proceedings, C.W. (Ed.), MoDISE-EUS. Montpellier,
France, p. 126.

Lim B. Y., Dey A. K. and Avrahami D. Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In Proceedings of CHI’09, pp. 2119-
2128. ACM. (2009a)

Lim B. Y. and Dey A. K. Assessing demand for intelligibility in context-aware
applications. In Proceedings of Ubicomp'09, pp. 195-204. ACM. (2009b)

Michotte, B., Vanderdonckt, J., 2008. GrafiXML, a Multi-target User Interface Builder
Based on UsiXML, in: ICAS. pp. 15–22.

Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Gilani, W., 2009. MDE
Adoption in Industry: Challenges and Success Criteria, in: Chaudron, M.V. (Ed.),
Models in Software Engineering, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 54–59.

Myers B. A., Weitzman D. A., Ko A. J. and Chau D. H. Answering why and why not
questions in user interfaces. In Proceedings of CHI'06, pp. 397-406. ACM (2006)

Nóbrega, L., Nunes, N., Coelho, H., 2006. Mapping ConcurTaskTrees into UML 2.0, in:
Gilroy, S., Harrison, M. (Eds.), Interactive Systems. Design, Specification, and
Verification, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 237–
248.

Norman, D.A., Draper, S.W., 1986. User centered system design: new perspectives on
human-computer interaction. Lawrence Erlbaum Associates.

Palanque P., Bastide R. and Dourte L. Contextual help for free with formal dialog design.
In Fifth International Conference on Human-Computer Interaction. Elsevier Science
Publisher. (1993)

Pangoli, S. and Paterno, F. Automatic generation of task-oriented help. In Proceedings of
UIST’95, ACM, New York, NY, USA, pp. 181-187. (1995)

Potts, C., 1989. A generic model for representing design methods, in: Proceedings of the
11th International Conference on Software Engineering, ICSE ’89. ACM, New York,
NY, USA, pp. 217–226.

Purchase H.C. and Worrill J. An empirical study of on-line help design: features and
principles. International Journal of Human Computer Studies. 56, 5. pp. 539-567 (2002)

Sustaining Designers' and Users' Quality of Life in the Paradigm of Plastic UIs 289

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., Eisenberg,

M., 2005. Design Principles for Tools to Support Creative Thinking. Work. Spons. Natl.
Sci. Found. 25–35.

Rolland, C., Prakash, N., Benjamen, A., 1999. A Multi-Model View of Process Modelling.
Requir. Eng. 4, 169–187.

Sukaviriya, P. and Foley, J. D. Coupling A UI framework with automatic generation of
context-sensitive animated help. In Proceedings of UIST'90, ACM, New York, NY,
USA. pp. 152-166. (1990)

Vanderdonckt, J., 2005. A MDA-Compliant Environment for Developing User Interfaces
of Information Systems, in: Proc. of 17 Th Conf. on Advanced Information Systems
Engineering CAiSE’05. Springer-Verlag, pp. 13-1

