
Revista Română de Interacţiune Om-Calculator 7 (2) 2014, 139-160 © MatrixRom

UsiGesture: Test and Evaluation of an
Environment for Integrating Gestures in User
Interfaces

François Beuvens, Jean Vanderdonckt
Université catholique de Louvain, Louvain School of Management - LILab
1 Place des Doyens, 1348 Louvain-la-Neuve, Belgium
E-mail: francois.beuvens@uclouvain.be, jean.vanderdonckt@uclouvain.be

Abstract. User interfaces allowing gesture recognition and manipulation are becoming
more and more popular these last years. It however remains a hard task for programmers to
developer such interfaces : some knowledge of recognition systems is required, along with
user experience and user interface management knowledge. It is often difficult for only one
developer to handle all this knowledge by itself and it is why a team gathering different
skills is most of the time needed. We previously presented a method along with a tool in
order to ease the collaboration between members of such a team. In this paper, we present
results and feedbacks collected by observing different teams that followed the method
and/or used the proposed tool.

Keywords: HCI, recognition, pen-based interaction, User interface modeling.

1. Introduction
Gesture-based user interfaces are getting more popular last years with the
emergence smartphones, tablets, and any other flat interaction surface that
could accommodate pen-based gestures. These new platforms usually
require gesture-based interaction with – often but not always – finger or pen
as inputs. Despite their recent increased popularity, such user interfaces are
considered for a long time and several tools have been realized in order to
bring support during their creation.

Pen-based gesture recognition (Calvary et al., 2003) (Landay, 1996)
(Signer et al., 2007) typically consists in interpreting hand-made marks,
called strokes (Beuvens and Vanderdonckt, 2012) (Long, 2001), made with
a pointing device (e.g., a mouse, a stylus, a light pen) on a flat constrained
vertical or horizontal surface (e.g., a table, a wall or a graphic tablet). Pen-
based gestures are applicable to a large area of tasks (e.g., music editing,

140 François Beuvens, Jean Vanderdonckt

drawing, sketching, spreadsheets, web navigation, equation editing) in many
different domains of activity (e.g., office automation (Wolf, 1986), ambient
intelligence (Hinckley et al., 2004), multimodal systems (Wilhelm et al.,
2010)) and a growing set of devices, ranging from smartphones to tabletop
interaction. Pen-based gestures can even be considered across several
platforms: starting on a smartphone and finishing on a tabletop (Hinckley et
al., 2004). When the locus of input is different from the locus of output
(e.g., with a graphic tablet), gestures are drawn outside the main display,
thus posing a visual discontinuity problem. When locus of input and output
match, a risk of occlusion occurs since the gesture is drawn on top of the
main display. The surface used for pen-based gestures is however used as a
way to constrain the gesture, thus helping its recognition.

Pen-based gestures have received considerable attention in both research
and development, namely for addressing the scientific problem of modeling,
analyzing, learning, interpreting, and recognizing gestures in a large
spectrum of setups. The large inclusion of pen-based gestures in widely-
available interactive applications has however not reached its full potential
due to at least the following reasons: designers and developers do not know
which recognition algorithm to select from such as large offer, how to tune
the selected algorithm depending on their context of use, and how to
incorporate the selected algorithm into streamlined User Interface (UI)
development in an effective and efficient way. Incorporating pen-based
gestures may also involve using Application Programming Interfaces
(APIs), libraries, toolkits or algorithm code that could be considered hard to
use.

In our paper (Beuvens and Vanderdonckt, 2012) we propose a method
and tool fostering team collaboration willing to create user interfaces
including gesture manipulation. The proposed environment is not aimed at
benchmarking algorithms like other platform like iGesture (Signer et al.,
2007), Inkkit (Plimmer and Freeman, 2007) or DataManater (Schmieder et
al., 2009). UsiGesture is a helper for the integration of gestures but is
independent of the choice of gestures and targets. It targets an improved and
streamlined development of gestural interface and is complementary with
the benchmarking platforms.

The method presented for UsiGesture presented in Figure 1 defines 4
different types of stakeholders involved in the creation of such an interface:

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

141

• The engineer/architect analyzes the different requirements elicited
by the user, the environment, or any other input and identifies the
different parts to be included in the user interface (widgets) as well
as the behavior enabling interaction with the user and between the
widgets. He is taking care of the ergonomics of the system.

• The designer is in charge of the aesthetics of the user interface. His
role is to choose the right layout parameters (size, color, font, etc.)
for each part of the user interface, and follow aesthetics rules based
on metrics such as density (Vanderdonckt, 2003) or balance (Ngo
and Byrne, 2001). He helps the engineer/architect ensuring good
ergonomics.

• The gesture specialist is devoted to the recognition mechanism
specification with its different parameters.

• The programmer(s) are the builders of the user interface. Based on
the specifications of the conception phase, they actually code it. This
includes the recognition mechanism, i.e. the algorithms and the
gesture datasets.

These roles are well delimited but they are usually more interfering and
lead to a real cooperation. In practice they are not exclusive as a single
person can play two or more roles. For example, the gesture specialist is not
always available and present in the organization developing the interface
and the developer of the interface is rarely well trained to this problem.

To support the method, a tool (see Figure 2) is proposed in order to
formalize the collaboration between these stakeholders. For that purpose, 3
roles are defined regarding the tool and the user interface to be produced:

• The Interface Users (IU): end users of the interface.
• The System Users (SU): first group of engineer(s)/architect(s),

designer(s) and gesture specialist(s) using the system in order to
produce the user interface for the Interface Users.

• The System Feeders (SF): second group of engineer(s)/architect(s),
designer(s), gesture specialist(s) and programmer(s) feeding the
system with knowledge allowing SU creating user interfaces.

The method is defined in 7 steps:

1. Interface Users define user interface requirements.

142 François Beuvens, Jean Vanderdonckt

2. Based on the UI requirements, System Users define system

requirements.

3. If system requirements not met: based on the system requirements,
System Feeders feed the system.

4. Based on UI requirements, System Users use the system to produce
the user interface.

5. If UI requirements not met: System Users refine system
requirements, then go back to step 3.

6. Interface Users use the produced user interface.

7. If Interface Users not satisfied: Interface Users refine UI
requirements, then go back to step 4.

To illustrate this method with a short example, we can consider the
creation of a document reader manipulated by gestures. It has been ordered
by John and Tom who are two big readers and want to improve their
reading process. As the interface users, they elicit their requirements: the
reader must have the ability to change the current page with gestures. Bob,
the developer in charge of this project, is not aware of gesture recognition
and wants to use UsiGesture tool that can help for that: he will act as a
system user. Unfortunately, the current state of UsiGesture does not include
such a feature. Bob will then contact Alice, a gesture specialist, to help him
in his task. She will then act as system feeder by implement the “next” and
“previous” gestures in UsiGesture tool. Bob will then be able to develop the
interface, and John and Tom to enjoy an improved document reader.

This small scenario shortly shows how the three categories of actors can
interact through UsiGesture. In practice, workflow is not so straightforward
and the steps are redone multiple times.

UsiGesture tool is articulated around three main regions. The upper right
part is the graphical representation of the interface being built by the system
users, along with the controls allowing adding the widgets needed
(graphical widgets, gestural components, …). This part allows the System
Users to build the interface through a WYSIWYG (What You See Is What
You Get) process. The bottom part is the XML representation of the
interface and can be used to visualize the current generated code or to add
directly components by writing code. The last part is the left column
showing the different Java classes representing the engine behind the editor

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

143

used by the System Users. The System Feeders can modify these Java
classes to enrich the interface generator.

Figure 1 - UsiGesture method.

144 François Beuvens, Jean Vanderdonckt

Figure 3 depicts the overview of the models used to describe the

components currently available in the platform.

Figure 2 - UsiGesture tool.

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

145

Figure 3 - UsiGesture model overview.

Figure 4 - Model core components.

146 François Beuvens, Jean Vanderdonckt

The upper-right part represents the core functionalities package. The

upper-left part (Figure 5) represents the gestural components, and the
bottom part (Figure 6) the behavior ones. For more details, please refer to
the aforementioned paper.

Figure 5 - Model gesture components.

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

147

Figure 6 - Model behavior components.

148 François Beuvens, Jean Vanderdonckt

2. Experiments
Two different experiments were conducted with the help of the method and
the tool.

2.1 Woke

Description

The goal of this work was to create a user interface simulating the system of
a woke restaurant (www.woke.be). It allows users to order food by
following a step-by-step vegetable and meet picker. This system was
created in two different ways:

• A more usual way where the actions are mapped to buttons, like
minus and plus to specify the amount of items (see Figure 7).

• A gestural system where actions can be executed with gestures, like
directly writing the amount of wanted items on the item itself.

The aim of these two representations is to compare usual interfaces with
their gestural equivalent and think how to improve them by integrating
gestures in a clever way. The scope of this work is limited to a portion of
the whole woke system and covers the main task of ordering a menu,
implying the three following subtasks:

• Choose ingredients: this task needs the user to define exactly what
he would like in his menu. The interface can only say if it’s possible
or not (for instance, a user can’t order 8 different meats at the same
time).

• Validate the menu: the interface will display a kind of summary
about what the user orders. It asks him to validate the menu if there
is no problem.

• Prepare the menu and deliver bill: the interface’s job here is only to
display that the menu has been ordered.

Solution

The interfaces constituting the solution can be divided into 6 parts:
• A list displaying the summary of all ingredients chosen by the user,

with the amount of each and the whole price.
• Another list displaying all available ingredients with the category.

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

149

• A label summarizing the number of calories, the items selected and
the price of the menu.

• A button array allowing the user to browse in the categories and to
confirm selection (confirmation window).

• A confirmation window.
• For the guidance, the interface shows a number indicating to the user

the current step. That number is at the top of the product panel.
The main difference between classical and gestural interfaces is the way

the number of items can be selected. With the classical ones, two buttons
(labeled with “+” and “-“) are used to increase/decrease the quantity. With
the gestural ones, the quantity can be drawn on the pictures. For both
interfaces, the number of each available ingredient is limited to 5.

The solution was created by respecting as much as possible the 6
criterions of Bastien and Scapin (Bastien and Scapin, 1993):

1. Coherence: the solution was thought to make it as easy as possible
for the users, with recognizable actions.

2. Utility: the number of functionalities available. It is maybe a
drawback of these interfaces, only a subset of them were
implemented in the scope of this work;

3. Workload: the number of actions by task isn't too high;

4. Adaptation: this kind of interface (gestural) can be re-used in other
contexts. This criterion is only used for gesture interface;

5. Representativity: each possible action has a label associated to it.
Those labels are light and don’t increase the workload;

6. Guidance: the solution was thought to avoid losing users in what they
have to do.

150 François Beuvens, Jean Vanderdonckt

Figure 7 - Woke experiment (general interface).

Figure 8 - Woke experiment (order interface)

In addition to user interface considerations, some tests have been
conducted to select the best recognition engine. In order to reuse the
mechanisms already provided by the platform, the algorithm to be used had
to be selected among Rubine, Stochastic Levenshtein and One Dollar. For
the woke use case, the most important gestures to be used are the digits and
some action gestures. The tests have then been conducted on the 10 digits (0

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

151

to 9) and four geometrical shapes (square, triangle, circle, and rectangle). It
appears the One Dollar algorithm was the most accurate for this case.

Survey and discussions

A survey was realized on 15 users for the comparison of classical and
gestural interfaces (please refer to Appendix A for more information about
these users). For this survey, participants were asked to rate the 6
ergonomics criterions of Bastien and Scapin explained before: coherence,
utility, workload, adaptation (only asked for gestural interface),
representativity and guidance. The results are depicted in Figure 9 and
Figure 10.

Figure 9 - Results for classical interface.

In addition to the graphics, general grades for each participant were
computed from 0 to 5. By considering three levels “bad” (0 – 2), “average”
(3) and “good” (4-5), we obtain:

• Classical interfaces: 9 good, 5 average, 1 bad;
• Gestural interfaces: 8 good, 6 average, 2 bad.

The results are quite comparable with a slight preference for the classical
interfaces. The general feeling about the gestural interfaces was that they are
more straightforward and intuitive, but the lack of recognition mechanism
for some digits was decreasing the level of usability.

152 François Beuvens, Jean Vanderdonckt

Figure 10 - Results for gestural interface

2.2. Restaurant

Description

The objective of this project is to assess two algorithms, Rubine (Rubine,
1991) and One Dollar (Wobbrock et al., 2007), in the situation of a
restaurant application and more precisely through the different gestures used
to navigate through this application.

The targeted task is similar to the woke interfaces. The goal is to select
items to order, by specifying the quantity with numbers directly drawn on
them.

Solution

The application is divided in two main sections: The drinks and the burgers.
Each page of the application shows a set of choices to the client and these
pages are divided into three parts as shown in Figure 11 and Figure 12.

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

153

Figure 11 - Restaurant experiment interface (drinks).

Figure 12 - Restaurant experiment interface (food).

154 François Beuvens, Jean Vanderdonckt

The first part of the application is a toggle menu and is positioned on the

top of the page. This menu shows the next and the previous page of the
application, both the drinks and food menu, and can be triggered by the two
gestures, left and right arrows.

The second part contains the user’s choice of hamburgers, self-made
hamburgers, beers, soft drinks, hot drinks and is the biggest part of the
application. It allows the user or the waiter to write a number on each
choice, this will then be registered in the third part of the application.

The third and last part is the client order list and is positioned on the right
side of the second part. It allows the client or the waiter to clean or validate
the order list with the two gestures, ok and no. These two gestures have
been added to the original set of gestures and are represented in Figure 13
with the other numerical and arrow gestures used.

Figure 13 - Gesture set for restaurant experiment.

The application was made so that the user can quickly change the
number of drinks he ordered. The value of each menu or drink is
overwritten when the user draws a new digit on it. This method provides
more usability to the user because a mistake can quickly be changed but it
limits the maximum amount of each menu and drink to nine. This is because
we can only recognize digits from zero to nine.

As an experiment, two same interfaces with different recognition engines
(Rubine and One Dollar) were firstly created. Several people were asked to
play with these two applications so that results could be collected separately
for each algorithm. With these results, Rubine and One Dollar algorithms
could be analyzed on every gesture and at the same time an improved
version mixing both algorithms could be created.

During the experiment, people could use the mouse, a touchpad or an
electronic pen with a tablet to test the application. Each person was asked to
do the experiment with every restaurant application made to evaluate the
two different recognition algorithms. The experiments was conducted either
on a UNIX or Windows operating system, and can be visualized in Figure

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

155

14 where all numbers were drawn by an anonymous tester to test the
effectiveness of gesture recognition.

Figure 14 - Restaurant experiment gestures handling.

Data has been collected on a total of 19 persons. The results presented in
Table 4 show that One Dollar algorithm is better for the digits, the ok and
the no gesture. The Rubine algorithm seems to be perfect for the arrows. We
can see that the digits too have some troubles but it actually really depends
on who draws the digits. For eight persons the results for the digit “2” were
equal to 100%. Another interesting notice is that the result of the
recognition was often the digit three when the result was wrong. These
discoveries allowed understanding that by adding records closer to the
writing of the eleven other persons to the recognition environment, better
results can be obtained. For the Ok and No gestures, the Rubine algorithm
works strangely as it recognize well the Ok when the gesture is small and
the No when the gesture is big.

Table 4 – Restaurant experiment results

 Rubine One Dollar
Digits
1 (one) 72% 94%
2 (two) 77% 55,5%
3 (three) 100% 98%

156 François Beuvens, Jean Vanderdonckt

4 (four) 0% 98%
5 (five) 0% 93%
6 (six) 11% 98%
7 (seven) 0% 80%
8 (eight) 100% 100%
9 (nine) 0% 98%
10 (ten) 72% 100%
Actions
Right arrow 100% 2%
Left arrow 100% 2%
Ok 50% 100%
No 50% 100%

Survey and discussion

Along with the experiment, participants were also asked their opinion about
the graphical user interface and its easiness.

From the graphical user interface standpoint, the nineteen users gave a
lot of different feedbacks. Fourteen people found that the use of gestures for
this application was really fun; three people found that it was interesting but
they prefer the WIMP paradigm (Taylor, 2009). The last two people are
completely opposed to the use of gestures such as digits because they think
it is neither intuitive nor accurate. Almost every user has the same issue:
they are not used to draw with a mouse and are not accustomed to work
with a tablet. We think that this issue is more important than it seems
because it is the habit of WIMP that will curb some people to use our
application. Another point of the graphical user interface is that the use of
the gesture “ok” and “no” is not so intuitive. If people do not know these
two gestures they cannot clean or order something. In consequence we think
that the application is more suitable for a waiter or a waitress than a simple
client because they will have a learning curve for the two gestures to use.

It was also noticed that 75% of the people prefer to use their fingers or a
digital pen than the mouse when using our application, and that it was more
intuitive for most people to draw a line going to the left in the upper menu
in order to go to the right side of the menu. It may be explained by the
young age of participants and their ability to use their smartphone.

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

157

3. Discussion and conclusion
This paper reports two experiments of gestural exploration for graphical
interfaces. They allow highlighting some needs for gestural interfaces
confection and evaluation. The main advantage brought by UsiGesture
platform in these situations is the possibility to avoid spending time on
recognition mechanisms and only focus on the most important: ergonomics
of the interface. UsiGesture acts as repository of algorithms as well as data
samples allowing setting the recognition system, but it does not assess the
right gestures for the right actions.

One important criterion to take into account when designing such
interfaces is the compatibility between the real world and the system.
Gestures need to be chosen adequately in order to be as representative as
possible of what human being would expect. This point has a big impact on
coherence criterion from Bastien and Scapin.

Different criterions of SQuaRE (Software Product Quality Requirements
and Evaluation) (ISO/IEC 25000) are or can be impacted by UsiGesture
method. Here are the most important ones:

• Interoperability: Interoperability is the ability of making systems and
organizations work together (inter-operate). UsiGesture improves
collaboration between different kinds of stakeholder (gesture
specialists, developers, designers, end-users, …).

• Suitability: Suitability is the degree to which a product or system
provides functions that meet stated and implied needs when used
under specified conditions. UsiGesture tool is targeted to help to the
integration of gestures and improves this process if used according
the proposed method.

• Resource utilization: Resource utilization is the ability to improve
available resources. UsiGesture improves human resources
utilization by allowing a good separation of tasks assigned to the
suitable stakeholders.

• Changeability: Changeability is the degree to which a product or
system can be effectively and efficiently modified without
introducing defects or degrading existing product quality. Adding
new gestures algorithms or dataset in UsiGesture is quite
straightforward. For adding gesture, the feeders needs to create the

158 François Beuvens, Jean Vanderdonckt

recognition mechanism itself and then plug it to the platform by
creating one new class and modifying two methods. The plugin
would require an effort estimated to of a few hours. Extending the
datasets represents a similar effort. For the user point of view,
changing an algorithm or dataset on a previously created interface is
very simple it can be changed through an option in the WYSIWYG
editor.

UsiGesture method can bring a good structure for the development
lifecycle of a project, but it may not be necessary in small applications. The
developers for the woke use case made the decision to not use it and
develop the interface independently of the end users with a result not very
convincing. However, the developers of the restaurant use case tried to take
end users into account by selecting the right algorithms for the right
gestures and then improving user experience.

Selecting the best algorithms to improve recognition is an example of
many possibilities to improve the user experience, like selecting the
appropriate gestures for the right situation, increasing the gesture set or the
number of existing algorithms. The platform is already designed to easily
support the improvement of algorithms and gestures set knowledge by
capitalizing on the different application coded with it. Additionally to the
developers’ knowledge, UsiGesture can still be improved by adding the
ability to automatically capitalize on end users knowledge. For example, the
platform could compute success rates between algorithms and types of
gestures (and possibly by taking context into account) thanks to all previous
recognitions done through the system. It may then support developers in
their choices of algorithms and gestures by suggesting the best
combinations. Another possibility would be to propose a survey for
querying the user at the end of interfaces manipulations. This could be
useful to aggregate quality information about Bastien and Scapin criterions
and guide the developers during the creation process.

References
Bastien, J.M.C., Scapin, D. (1993) Ergonomic Criteria for the Evaluation of Human-

Computer Interfaces. Institut National de recherche en informatique et en automatique,
France (http://www.inria.fr)

Beuvens, F. and Vanderdonckt, J. (2012) Designing Graphical User Interfaces Integrating
Gestures. Proc. of SigDoc’12, 313-322

UsiGesture: Test and Evaluation of an Environment for Integrating Gestures in
User Interfaces

159

Beuvens, F. and Vanderdonckt, J. (2012) UsiGesture: an Environment for Integrating Pen-

Based Interaction in User Interfaces. Proc. of RCIS’12, 339-350
Calvary, G. et al. (2003) A Unifying Reference Framework for Multi-Target User

Interfaces. Interacting with Computer 15 (3), 289-308.
Hinckley, K., Ramos, G., Guimbretière, F., Baudish, P., and Smith, M. Stitching (2004)

pen gestures that span multiple displays. Proc. of AVI’04. ACM Press, NY, 23-31
ISO/IEC 25000, http://www.iso.org/iso/catalogue_detail?csnumber=35683
Landay, J. A. (1996) SILK: Sketching Interfaces Like Krazy. CHI’96, ACM, NY, 389-399.
Levenshtein, V. I. (1966) Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady 10 (8), 707–710
Long, A.C.J. (2001) quill: A Gesture Design Tool for Pen-based User Interfaces. PhD

Thesis, Univ. of California at Berkeley
Ngo, D. C. L., Byrne, J. G. (2001) Another Look at a Model for Evaluating Interface

Aesthetics. AMCS 11 (2), 515-535
Plimmer, B., Freeman, I. (2007) A Toolkit Approach to Sketched Diagram Recognition.

HCI, Lancaster, UK, 205-213
Rubine, D. (1991) Specifying gestures by example. SIGGRAPH Computer Graphics
Schmieder, P., Plimmer, B., and Blagojevic, R. (2009) Automatic Evaluation of Sketch

Recognizers. SBIM’09 ACM Press, 85–92.
Signer, B., Kurmann, U., and Norrie, M. C. (2007) iGesture: A General Gesture

Recognition Framework. ICDAR’2007, Los Alamitos, 954-958.
Taylor A. G. (2009) WIMP interfaces,

http://www.cc.gatech.edu/classes/cs6751_97_winter/Topics/dialog-wimp/
Vanderdonckt, J. (2003) Visual Design Methods In Interactive Applications. Mahwah :

Lawrence Erlbaum Associates, 187-203
Wilhelm, M., Roscher, D., Blumendorf, M., and Albayrak, S. (2010) A Trajectory-Based

Approach for Device Independent Gesture Recognition in Multimodal User Interface.
Proc. of HAID’ 2010, 197–206

Wobbrock, J. O., Wilson, A. D., Li Y. (2007) Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. Proc. of UIST’07, 159– 168

Wolf, C. (1986) Can people use gesture commands? ACM SIGCHI Bulletin 18 (2), 73–74

160 François Beuvens, Jean Vanderdonckt

Appendix A. Woke users statistics
Sex Job Area of activity Age qualification Affinity with

graphical interface
(grades /10)

1 M Student Computer
science

23 University 8

2 W Student Computer
science

24 University 9

3 W Student Computer
science

21 University 8

4 M Student Economy 22 University 6
5 M Student Economy 19 University 5
6 W Manager Management

sciences
48 University 6

7 W Manager Management
sciences

41 University 4

8 M Manager goods transport 53 high school 5
9 W self-employed / 34 high school 2
10 W self-employed / 49 high school 3
11 M woke's

employee
Food 24 University 7

12 M woke's
employee

Food 25 University 6

13 M Employee Secrataryship 32 high school 5
14 W Employee Medicine 36 high school 4
15 M Employee Medicine 37 Others 3

34%

20% 13%

13%

20%

Jobs
Student

Manager

Self-elployed

woke's
employee
employee

.

